pikto's picture
Duplicate from algovenus/text-generation-webui
82fea12
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class RegressionDataset:
def __init__(self, a=2, b=3, length=64, seed=None):
rng = np.random.default_rng(seed)
self.length = length
self.x = rng.normal(size=(length,)).astype(np.float32)
self.y = a * self.x + b + rng.normal(scale=0.1, size=(length,)).astype(np.float32)
def __len__(self):
return self.length
def __getitem__(self, i):
return {"x": self.x[i], "y": self.y[i]}
class RegressionModel4XPU(torch.nn.Module):
def __init__(self, a=0, b=0, double_output=False):
super().__init__()
self.a = torch.nn.Parameter(torch.tensor([2, 3]).float())
self.b = torch.nn.Parameter(torch.tensor([2, 3]).float())
self.first_batch = True
def forward(self, x=None):
if self.first_batch:
print(f"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}")
self.first_batch = False
return x * self.a[0] + self.b[0]
class RegressionModel(torch.nn.Module):
def __init__(self, a=0, b=0, double_output=False):
super().__init__()
self.a = torch.nn.Parameter(torch.tensor(a).float())
self.b = torch.nn.Parameter(torch.tensor(b).float())
self.first_batch = True
def forward(self, x=None):
if self.first_batch:
print(f"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}")
self.first_batch = False
return x * self.a + self.b
def mocked_dataloaders(accelerator, batch_size: int = 16):
from datasets import load_dataset
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
data_files = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"}
datasets = load_dataset("csv", data_files=data_files)
label_list = datasets["train"].unique("label")
label_to_id = {v: i for i, v in enumerate(label_list)}
def tokenize_function(examples):
# max_length=None => use the model max length (it's actually the default)
outputs = tokenizer(
examples["sentence1"], examples["sentence2"], truncation=True, max_length=None, padding="max_length"
)
if "label" in examples:
outputs["labels"] = [label_to_id[l] for l in examples["label"]]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
tokenized_datasets = datasets.map(
tokenize_function,
batched=True,
remove_columns=["sentence1", "sentence2", "label"],
)
def collate_fn(examples):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt")
return tokenizer.pad(examples, padding="longest", return_tensors="pt")
# Instantiate dataloaders.
train_dataloader = DataLoader(tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=2)
eval_dataloader = DataLoader(tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=1)
return train_dataloader, eval_dataloader