Spaces:
Sleeping
Sleeping
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import importlib | |
import importlib.metadata | |
import os | |
import warnings | |
from distutils.util import strtobool | |
from functools import lru_cache | |
import torch | |
from packaging import version | |
from packaging.version import parse | |
from .environment import parse_flag_from_env | |
from .versions import compare_versions, is_torch_version | |
try: | |
import torch_xla.core.xla_model as xm # noqa: F401 | |
_tpu_available = True | |
except ImportError: | |
_tpu_available = False | |
# Cache this result has it's a C FFI call which can be pretty time-consuming | |
_torch_distributed_available = torch.distributed.is_available() | |
def _is_package_available(pkg_name): | |
# Check we're not importing a "pkg_name" directory somewhere but the actual library by trying to grab the version | |
package_exists = importlib.util.find_spec(pkg_name) is not None | |
if package_exists: | |
try: | |
_ = importlib.metadata.metadata(pkg_name) | |
return True | |
except importlib.metadata.PackageNotFoundError: | |
return False | |
def is_torch_distributed_available() -> bool: | |
return _torch_distributed_available | |
def is_ccl_available(): | |
try: | |
pass | |
except ImportError: | |
print( | |
"Intel(R) oneCCL Bindings for PyTorch* is required to run DDP on Intel(R) GPUs, but it is not" | |
" detected. If you see \"ValueError: Invalid backend: 'ccl'\" error, please install Intel(R) oneCCL" | |
" Bindings for PyTorch*." | |
) | |
return ( | |
importlib.util.find_spec("torch_ccl") is not None | |
or importlib.util.find_spec("oneccl_bindings_for_pytorch") is not None | |
) | |
def get_ccl_version(): | |
return importlib.metadata.version("oneccl_bind_pt") | |
def is_fp8_available(): | |
return _is_package_available("transformer_engine") | |
def is_tpu_available(check_device=True): | |
"Checks if `torch_xla` is installed and potentially if a TPU is in the environment" | |
# Due to bugs on the amp series GPUs, we disable torch-xla on them | |
if torch.cuda.is_available(): | |
return False | |
if _tpu_available and check_device: | |
try: | |
# Will raise a RuntimeError if no XLA configuration is found | |
_ = xm.xla_device() | |
return True | |
except RuntimeError: | |
return False | |
return _tpu_available | |
def is_deepspeed_available(): | |
return _is_package_available("deepspeed") | |
def is_bf16_available(ignore_tpu=False): | |
"Checks if bf16 is supported, optionally ignoring the TPU" | |
if is_tpu_available(): | |
return not ignore_tpu | |
if torch.cuda.is_available(): | |
return torch.cuda.is_bf16_supported() | |
if is_npu_available(): | |
return False | |
return True | |
def is_4bit_bnb_available(): | |
package_exists = _is_package_available("bitsandbytes") | |
if package_exists: | |
bnb_version = version.parse(importlib.metadata.version("bitsandbytes")) | |
return compare_versions(bnb_version, ">=", "0.39.0") | |
return False | |
def is_8bit_bnb_available(): | |
package_exists = _is_package_available("bitsandbytes") | |
if package_exists: | |
bnb_version = version.parse(importlib.metadata.version("bitsandbytes")) | |
return compare_versions(bnb_version, ">=", "0.37.2") | |
return False | |
def is_bnb_available(): | |
return _is_package_available("bitsandbytes") | |
def is_megatron_lm_available(): | |
if strtobool(os.environ.get("ACCELERATE_USE_MEGATRON_LM", "False")) == 1: | |
package_exists = importlib.util.find_spec("megatron") is not None | |
if package_exists: | |
try: | |
megatron_version = parse(importlib.metadata.version("megatron-lm")) | |
return compare_versions(megatron_version, ">=", "2.2.0") | |
except Exception as e: | |
warnings.warn(f"Parse Megatron version failed. Exception:{e}") | |
return False | |
def is_safetensors_available(): | |
return _is_package_available("safetensors") | |
def is_transformers_available(): | |
return _is_package_available("transformers") | |
def is_datasets_available(): | |
return _is_package_available("datasets") | |
def is_aim_available(): | |
return _is_package_available("aim") | |
def is_tensorboard_available(): | |
return _is_package_available("tensorboard") or _is_package_available("tensorboardX") | |
def is_wandb_available(): | |
return _is_package_available("wandb") | |
def is_comet_ml_available(): | |
return _is_package_available("comet_ml") | |
def is_boto3_available(): | |
return _is_package_available("boto3") | |
def is_rich_available(): | |
if _is_package_available("rich"): | |
if "ACCELERATE_DISABLE_RICH" in os.environ: | |
warnings.warn( | |
"`ACCELERATE_DISABLE_RICH` is deprecated and will be removed in v0.22.0 and deactivated by default. Please use `ACCELERATE_ENABLE_RICH` if you wish to use `rich`." | |
) | |
return not parse_flag_from_env("ACCELERATE_DISABLE_RICH", False) | |
return parse_flag_from_env("ACCELERATE_ENABLE_RICH", False) | |
return False | |
def is_sagemaker_available(): | |
return _is_package_available("sagemaker") | |
def is_tqdm_available(): | |
return _is_package_available("tqdm") | |
def is_mlflow_available(): | |
return _is_package_available("mlflow") | |
def is_mps_available(): | |
return is_torch_version(">=", "1.12") and torch.backends.mps.is_available() and torch.backends.mps.is_built() | |
def is_ipex_available(): | |
def get_major_and_minor_from_version(full_version): | |
return str(version.parse(full_version).major) + "." + str(version.parse(full_version).minor) | |
_torch_version = importlib.metadata.version("torch") | |
if importlib.util.find_spec("intel_extension_for_pytorch") is None: | |
return False | |
_ipex_version = "N/A" | |
try: | |
_ipex_version = importlib.metadata.version("intel_extension_for_pytorch") | |
except importlib.metadata.PackageNotFoundError: | |
return False | |
torch_major_and_minor = get_major_and_minor_from_version(_torch_version) | |
ipex_major_and_minor = get_major_and_minor_from_version(_ipex_version) | |
if torch_major_and_minor != ipex_major_and_minor: | |
warnings.warn( | |
f"Intel Extension for PyTorch {ipex_major_and_minor} needs to work with PyTorch {ipex_major_and_minor}.*," | |
f" but PyTorch {_torch_version} is found. Please switch to the matching version and run again." | |
) | |
return False | |
return True | |
def is_npu_available(check_device=False): | |
"Checks if `torch_npu` is installed and potentially if a NPU is in the environment" | |
if importlib.util.find_spec("torch") is None or importlib.util.find_spec("torch_npu") is None: | |
return False | |
import torch | |
import torch_npu # noqa: F401 | |
if check_device: | |
try: | |
# Will raise a RuntimeError if no NPU is found | |
_ = torch.npu.device_count() | |
return torch.npu.is_available() | |
except RuntimeError: | |
return False | |
return hasattr(torch, "npu") and torch.npu.is_available() | |
def is_xpu_available(check_device=False): | |
"check if user disables it explicitly" | |
if not parse_flag_from_env("ACCELERATE_USE_XPU", default=True): | |
return False | |
"Checks if `intel_extension_for_pytorch` is installed and potentially if a XPU is in the environment" | |
if is_ipex_available(): | |
import torch | |
if is_torch_version("<=", "1.12"): | |
return False | |
else: | |
return False | |
import intel_extension_for_pytorch # noqa: F401 | |
if check_device: | |
try: | |
# Will raise a RuntimeError if no XPU is found | |
_ = torch.xpu.device_count() | |
return torch.xpu.is_available() | |
except RuntimeError: | |
return False | |
return hasattr(torch, "xpu") and torch.xpu.is_available() | |