Spaces:
Sleeping
Sleeping
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import socket | |
from contextlib import contextmanager | |
import torch | |
from ..commands.config.default import write_basic_config # noqa: F401 | |
from ..state import PartialState | |
from .dataclasses import DistributedType | |
from .imports import is_deepspeed_available, is_tpu_available | |
from .transformer_engine import convert_model | |
from .versions import is_torch_version | |
if is_deepspeed_available(): | |
from deepspeed import DeepSpeedEngine | |
if is_tpu_available(check_device=False): | |
import torch_xla.core.xla_model as xm | |
def is_compiled_module(module): | |
""" | |
Check whether the module was compiled with torch.compile() | |
""" | |
if is_torch_version("<", "2.0.0") or not hasattr(torch, "_dynamo"): | |
return False | |
return isinstance(module, torch._dynamo.eval_frame.OptimizedModule) | |
def extract_model_from_parallel(model, keep_fp32_wrapper: bool = True): | |
""" | |
Extract a model from its distributed containers. | |
Args: | |
model (`torch.nn.Module`): | |
The model to extract. | |
keep_fp32_wrapper (`bool`, *optional*): | |
Whether to remove mixed precision hooks from the model. | |
Returns: | |
`torch.nn.Module`: The extracted model. | |
""" | |
options = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) | |
is_compiled = is_compiled_module(model) | |
if is_compiled: | |
compiled_model = model | |
model = model._orig_mod | |
if is_deepspeed_available(): | |
options += (DeepSpeedEngine,) | |
while isinstance(model, options): | |
model = model.module | |
if not keep_fp32_wrapper: | |
forward = getattr(model, "forward") | |
original_forward = model.__dict__.pop("_original_forward", None) | |
if original_forward is not None: | |
while hasattr(forward, "__wrapped__"): | |
forward = forward.__wrapped__ | |
if forward == original_forward: | |
break | |
model.forward = forward | |
if getattr(model, "_converted_to_transformer_engine", False): | |
convert_model(model, to_transformer_engine=False) | |
if is_compiled: | |
compiled_model._orig_mod = model | |
model = compiled_model | |
return model | |
def wait_for_everyone(): | |
""" | |
Introduces a blocking point in the script, making sure all processes have reached this point before continuing. | |
<Tip warning={true}> | |
Make sure all processes will reach this instruction otherwise one of your processes will hang forever. | |
</Tip> | |
""" | |
PartialState().wait_for_everyone() | |
def save(obj, f): | |
""" | |
Save the data to disk. Use in place of `torch.save()`. | |
Args: | |
obj: The data to save | |
f: The file (or file-like object) to use to save the data | |
""" | |
if PartialState().distributed_type == DistributedType.TPU: | |
xm.save(obj, f) | |
elif PartialState().local_process_index == 0: | |
torch.save(obj, f) | |
def patch_environment(**kwargs): | |
""" | |
A context manager that will add each keyword argument passed to `os.environ` and remove them when exiting. | |
Will convert the values in `kwargs` to strings and upper-case all the keys. | |
Example: | |
```python | |
>>> import os | |
>>> from accelerate.utils import patch_environment | |
>>> with patch_environment(FOO="bar"): | |
... print(os.environ["FOO"]) # prints "bar" | |
>>> print(os.environ["FOO"]) # raises KeyError | |
``` | |
""" | |
for key, value in kwargs.items(): | |
os.environ[key.upper()] = str(value) | |
yield | |
for key in kwargs: | |
if key.upper() in os.environ: | |
del os.environ[key.upper()] | |
def get_pretty_name(obj): | |
""" | |
Gets a pretty name from `obj`. | |
""" | |
if not hasattr(obj, "__qualname__") and not hasattr(obj, "__name__"): | |
obj = getattr(obj, "__class__", obj) | |
if hasattr(obj, "__qualname__"): | |
return obj.__qualname__ | |
if hasattr(obj, "__name__"): | |
return obj.__name__ | |
return str(obj) | |
def merge_dicts(source, destination): | |
""" | |
Recursively merges two dictionaries. | |
Args: | |
source (`dict`): The dictionary to merge into `destination`. | |
destination (`dict`): The dictionary to merge `source` into. | |
""" | |
for key, value in source.items(): | |
if isinstance(value, dict): | |
node = destination.setdefault(key, {}) | |
merge_dicts(value, node) | |
else: | |
destination[key] = value | |
return destination | |
def is_port_in_use(port: int = None) -> bool: | |
""" | |
Checks if a port is in use on `localhost`. Useful for checking if multiple `accelerate launch` commands have been | |
run and need to see if the port is already in use. | |
""" | |
if port is None: | |
port = 29500 | |
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: | |
return s.connect_ex(("localhost", port)) == 0 | |