Spaces:
Sleeping
Sleeping
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import random | |
from typing import List, Optional, Union | |
import numpy as np | |
import torch | |
from ..state import AcceleratorState | |
from .constants import CUDA_DISTRIBUTED_TYPES | |
from .dataclasses import DistributedType, RNGType | |
from .imports import is_npu_available, is_tpu_available, is_xpu_available | |
if is_tpu_available(check_device=False): | |
import torch_xla.core.xla_model as xm | |
def set_seed(seed: int, device_specific: bool = False): | |
""" | |
Helper function for reproducible behavior to set the seed in `random`, `numpy`, `torch`. | |
Args: | |
seed (`int`): | |
The seed to set. | |
device_specific (`bool`, *optional*, defaults to `False`): | |
Whether to differ the seed on each device slightly with `self.process_index`. | |
""" | |
if device_specific: | |
seed += AcceleratorState().process_index | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
if is_xpu_available(): | |
torch.xpu.manual_seed_all(seed) | |
elif is_npu_available(): | |
torch.npu.manual_seed_all(seed) | |
else: | |
torch.cuda.manual_seed_all(seed) | |
# ^^ safe to call this function even if cuda is not available | |
if is_tpu_available(): | |
xm.set_rng_state(seed) | |
def synchronize_rng_state(rng_type: Optional[RNGType] = None, generator: Optional[torch.Generator] = None): | |
# Get the proper rng state | |
if rng_type == RNGType.TORCH: | |
rng_state = torch.get_rng_state() | |
elif rng_type == RNGType.CUDA: | |
rng_state = torch.cuda.get_rng_state() | |
elif rng_type == RNGType.XLA: | |
assert is_tpu_available(), "Can't synchronize XLA seeds on an environment without TPUs." | |
rng_state = torch.tensor(xm.get_rng_state()) | |
elif rng_type == RNGType.NPU: | |
assert is_npu_available(), "Can't synchronize NPU seeds on an environment without NPUs." | |
rng_state = torch.npu.get_rng_state() | |
elif rng_type == RNGType.XPU: | |
assert is_xpu_available(), "Can't synchronize XPU seeds on an environment without XPUs." | |
rng_state = torch.xpu.get_rng_state() | |
elif rng_type == RNGType.GENERATOR: | |
assert generator is not None, "Need a generator to synchronize its seed." | |
rng_state = generator.get_state() | |
# Broadcast the rng state from device 0 to other devices | |
state = AcceleratorState() | |
if state.distributed_type == DistributedType.TPU: | |
rng_state = rng_state.to(xm.xla_device()) | |
xm.collective_broadcast([rng_state]) | |
xm.mark_step() | |
rng_state = rng_state.cpu() | |
elif ( | |
state.distributed_type in CUDA_DISTRIBUTED_TYPES | |
or state.distributed_type == DistributedType.MULTI_NPU | |
or state.distributed_type == DistributedType.MULTI_XPU | |
): | |
rng_state = rng_state.to(state.device) | |
torch.distributed.broadcast(rng_state, 0) | |
rng_state = rng_state.cpu() | |
elif state.distributed_type == DistributedType.MULTI_CPU: | |
torch.distributed.broadcast(rng_state, 0) | |
# Set the broadcast rng state | |
if rng_type == RNGType.TORCH: | |
torch.set_rng_state(rng_state) | |
elif rng_type == RNGType.CUDA: | |
torch.cuda.set_rng_state(rng_state) | |
elif rng_type == RNGType.NPU: | |
torch.npu.set_rng_state(rng_state) | |
elif rng_type == RNGType.XPU: | |
torch.xpu.set_rng_state(rng_state) | |
elif rng_type == RNGType.XLA: | |
xm.set_rng_state(rng_state.item()) | |
elif rng_type == RNGType.GENERATOR: | |
generator.set_state(rng_state) | |
def synchronize_rng_states(rng_types: List[Union[str, RNGType]], generator: Optional[torch.Generator] = None): | |
for rng_type in rng_types: | |
synchronize_rng_state(RNGType(rng_type), generator=generator) | |