Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import math | |
import os | |
import torch | |
import torch.distributed as dist | |
import bitsandbytes.functional as F | |
from bitsandbytes.optim.optimizer import Optimizer2State | |
class Adam(Optimizer2State): | |
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, | |
args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): | |
super().__init__( "adam", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged) | |
class Adam8bit(Optimizer2State): | |
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, | |
args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): | |
super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged) | |
class Adam32bit(Optimizer2State): | |
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, | |
args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): | |
super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=is_paged) | |
class PagedAdam(Optimizer2State): | |
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, | |
args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): | |
super().__init__( "adam", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) | |
class PagedAdam8bit(Optimizer2State): | |
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, | |
args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): | |
super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) | |
class PagedAdam32bit(Optimizer2State): | |
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, | |
args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, is_paged=False): | |
super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, is_paged=True) | |
class AnalysisAdam(torch.optim.Optimizer): | |
"""Adam that performs 8-bit vs 32-bit error analysis. | |
This implementation is modified from torch.optim.Adam based on: | |
`Fixed Weight Decay Regularization in Adam` | |
(see https://arxiv.org/abs/1711.05101) | |
It has been proposed in `Adam: A Method for Stochastic Optimization`_. | |
Arguments: | |
params (iterable): iterable of parameters to optimize or dicts defining | |
parameter groups | |
lr (float, optional): learning rate (default: 1e-3) | |
betas (Tuple[float, float], optional): coefficients used for computing | |
running averages of gradient and its square (default: (0.9, 0.999)) | |
eps (float, optional): term added to the denominator to improve | |
numerical stability (default: 1e-8) | |
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) | |
amsgrad (boolean, optional): whether to use the AMSGrad variant of this | |
algorithm from the paper `On the Convergence of Adam and Beyond`_ | |
.. _Adam: A Method for Stochastic Optimization: | |
https://arxiv.org/abs/1412.6980 | |
.. _On the Convergence of Adam and Beyond: | |
https://openreview.net/forum?id=ryQu7f-RZ | |
""" | |
def __init__( | |
self, | |
params, | |
lr=1e-3, | |
betas=(0.9, 0.999), | |
eps=1e-8, | |
weight_decay=0, | |
amsgrad=False, | |
bnb_analysis="dynamic-blockwise", | |
savedir=None, | |
): | |
defaults = dict( | |
lr=lr, | |
betas=betas, | |
eps=eps, | |
weight_decay=weight_decay, | |
amsgrad=amsgrad, | |
) | |
super().__init__(params, defaults) | |
self.analysis = bnb_analysis | |
self.savedir = savedir | |
def supports_memory_efficient_fp16(self): | |
return True | |
def supports_flat_params(self): | |
return True | |
def step(self, closure=None): | |
"""Performs a single optimization step. | |
Arguments: | |
closure (callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
""" | |
loss = None | |
if closure is not None: | |
loss = closure() | |
for group in self.param_groups: | |
for p_id, p in enumerate(group["params"]): | |
if p.grad is None: | |
continue | |
grad = p.grad.data | |
if grad.dtype in {torch.float16, torch.bfloat16}: | |
grad = grad.float() | |
if grad.is_sparse: | |
raise RuntimeError( | |
"Adam does not support sparse gradients, please consider SparseAdam instead" | |
) | |
amsgrad = group.get("amsgrad", False) | |
assert not amsgrad | |
p_data_fp32 = p.data | |
if p.data.dtype in {torch.float16, torch.bfloat16}: | |
p_data_fp32 = p_data_fp32.float() | |
state = self.state[p] | |
# State initialization | |
if len(state) == 0: | |
state["step"] = 0 | |
# Exponential moving average of gradient values | |
state["exp_avg"] = torch.zeros_like(p_data_fp32) | |
# Exponential moving average of squared gradient values | |
state["exp_avg_sq"] = torch.zeros_like(p_data_fp32) | |
state["abserrors"] = torch.zeros( | |
(256, 256), device=p_data_fp32.device | |
) | |
state["relerrors"] = torch.zeros( | |
(256, 256), device=p_data_fp32.device | |
) | |
state["counts"] = torch.zeros( | |
(256, 256), device=p_data_fp32.device | |
) | |
if amsgrad: | |
# Maintains max of all exp. moving avg. of sq. grad. values | |
state["max_exp_avg_sq"] = torch.zeros_like(p_data_fp32) | |
else: | |
state["exp_avg"] = state["exp_avg"].to(p_data_fp32) | |
state["exp_avg_sq"] = state["exp_avg_sq"].to(p_data_fp32) | |
if amsgrad: | |
state["max_exp_avg_sq"] = state["max_exp_avg_sq"].to( | |
p_data_fp32 | |
) | |
state["step"] += 1 | |
beta1, beta2 = group["betas"] | |
bias_correction1 = 1 - beta1 ** state["step"] | |
bias_correction2 = 1 - beta2 ** state["step"] | |
step_size = ( | |
group["lr"] * math.sqrt(bias_correction2) / bias_correction1 | |
) | |
e = state["abserrors"] | |
rele = state["relerrors"] | |
counts = state["counts"] | |
if group["weight_decay"] != 0: | |
p_data_fp32.add_( | |
p_data_fp32, alpha=-group["weight_decay"] * group["lr"] | |
) | |
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] | |
if amsgrad: | |
max_exp_avg_sq = state["max_exp_avg_sq"] | |
# Decay the first and second moment running average coefficient | |
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) | |
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) | |
denom = exp_avg_sq.sqrt().add_(group["eps"]) | |
update_fp32 = exp_avg / denom | |
if ( | |
p_data_fp32.numel() <= 8192 | |
or p_data_fp32.numel() > 50000 * 1000 | |
): | |
# embedding layer or too small | |
p_data_fp32 += -step_size * update_fp32 | |
else: | |
if self.analysis == "dynamic-blockwise": | |
code1 = F.create_dynamic_map(signed=True).to(p.device) | |
code2 = F.create_dynamic_map(signed=False).to(p.device) | |
C1, S1 = F.quantize_blockwise(exp_avg, code=code1) | |
state1 = F.dequantize_blockwise(C1, S1) | |
C2, S2 = F.quantize_blockwise(exp_avg_sq, code=code2) | |
state2 = F.dequantize_blockwise(C2, S2) | |
elif self.analysis == "dynamic": | |
code1 = F.create_dynamic_map(signed=True).to(p.device) | |
code2 = F.create_dynamic_map(signed=False).to(p.device) | |
C1, S1 = F.quantize(exp_avg, code=code1) | |
state1 = F.dequantize(C1, S1) | |
C2, S2 = F.quantize(exp_avg_sq, code=code2) | |
state2 = F.dequantize(C2, S2) | |
elif self.analysis == "linear": | |
code1 = F.create_linear_map(signed=True).to(p.device) | |
code2 = F.create_linear_map(signed=False).to(p.device) | |
C1, S1 = F.quantize(exp_avg, code=code1) | |
state1 = F.dequantize(C1, S1) | |
C2, S2 = F.quantize(exp_avg_sq, code=code2) | |
state2 = F.dequantize(C2, S2) | |
elif self.analysis == "quantile": | |
code1 = F.estimate_quantiles(exp_avg) | |
code2 = F.estimate_quantiles(exp_avg_sq) | |
C1 = F.quantize_no_absmax(exp_avg, code=code1) | |
state1 = F.dequantize_no_absmax(C1, code1) | |
C2 = F.quantize_no_absmax(exp_avg_sq, code=code2) | |
state2 = F.dequantize_no_absmax(C2, code2) | |
elif self.analysis == "my-quantization-routine": | |
pass | |
# 1. get code | |
# 2. quantize | |
# 3. dequantize | |
# Error will be calculated automatically! | |
else: | |
raise ValueError( | |
f"Invalid analysis value: {self.analysis}!" | |
) | |
denom = state2.sqrt().add_(group["eps"]) | |
update_8bit = state1 / denom | |
abserr = torch.abs(update_8bit - update_fp32) | |
relerr = abserr / torch.abs(update_fp32 + 1e-6) | |
C1, C2 = C1.int(), C2.int() | |
F.histogram_scatter_add_2d(e, C1.int(), C2.int(), abserr) | |
F.histogram_scatter_add_2d(rele, C1.int(), C2.int(), relerr) | |
F.histogram_scatter_add_2d( | |
counts, C1.int(), C2.int(), torch.ones_like(abserr) | |
) | |
p_data_fp32 += -step_size * update_fp32 | |
if not dist.is_initialized() or dist.get_rank() == 0: | |
if self.savedir != "" and state["step"] % 100 == 0: | |
if not os.path.exists(self.savedir): | |
os.makedirs(self.savedir) | |
shapestr = "_".join( | |
[str(dim) for dim in p_data_fp32.shape] | |
) | |
pathe = os.path.join( | |
self.savedir, f"{p_id}_{shapestr}_abserr.pkl" | |
) | |
pathrele = os.path.join( | |
self.savedir, f"{p_id}_{shapestr}_relerr.pkl" | |
) | |
pathcounts = os.path.join( | |
self.savedir, f"{p_id}_{shapestr}_counts.pkl" | |
) | |
torch.save(e, pathe) | |
torch.save(rele, pathrele) | |
torch.save(counts, pathcounts) | |
if p.data.dtype in {torch.float16, torch.bfloat16}: | |
p.data.copy_(p_data_fp32) | |
return loss | |