Spaces:
Sleeping
Sleeping
import math | |
import torch | |
import time | |
from bitsandbytes.triton.triton_utils import is_triton_available | |
if not is_triton_available(): | |
def quantize_global_transpose(input): return None | |
def quantize_global(x: torch.Tensor): return None | |
else: | |
import triton | |
import triton.language as tl | |
from triton.ops.matmul_perf_model import early_config_prune, estimate_matmul_time | |
# global quantize | |
def _quantize_global( | |
x_ptr, | |
absmax_inv_ptr, | |
output_ptr, | |
n_elements, | |
BLOCK_SIZE: tl.constexpr, | |
): | |
pid = tl.program_id(axis=0) | |
block_start = pid * BLOCK_SIZE | |
offsets = block_start + tl.arange(0, BLOCK_SIZE) | |
mask = offsets < n_elements | |
x = tl.load(x_ptr + offsets, mask=mask) | |
absmax_inv = tl.load(absmax_inv_ptr) | |
output = tl.libdevice.llrint(127. * (x * absmax_inv)) | |
tl.store(output_ptr + offsets, output, mask=mask) | |
def quantize_global(x: torch.Tensor): | |
absmax = x.abs().max().unsqueeze(0) | |
absmax_inv = 1./ absmax | |
output = torch.empty(*x.shape, device='cuda', dtype=torch.int8) | |
assert x.is_cuda and output.is_cuda | |
n_elements = output.numel() | |
grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),) | |
_quantize_global[grid](x, absmax_inv, output, n_elements) | |
return output, absmax | |
# global quantize and transpose | |
def _quantize_global_transpose(A, absmax_inv_ptr, B, stride_am, stride_an, stride_bn, stride_bm, M, N, | |
BLOCK_M : tl.constexpr, | |
BLOCK_N : tl.constexpr, | |
GROUP_M : tl.constexpr): | |
pid = tl.program_id(0) | |
grid_m = (M + BLOCK_M - 1) // BLOCK_M | |
grid_n = (N + BLOCK_N - 1) // BLOCK_N | |
width = GROUP_M * grid_n | |
group_id = pid // width | |
group_size = min(grid_m - group_id * GROUP_M, GROUP_M) | |
pid_m = group_id * GROUP_M + (pid % group_size) | |
pid_n = (pid % width) // group_size | |
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) | |
rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) | |
A = A + (rm[:, None] * stride_am + rn[None, :] * stride_an) | |
mask = (rm < M)[:, None] & (rn < N)[None, :] | |
a = tl.load(A, mask=mask) | |
absmax_inv = tl.load(absmax_inv_ptr) | |
# rematerialize to save registers | |
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) | |
rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) | |
B = B + (rm[:, None] * stride_bm + rn[None, :] * stride_bn) | |
mask = (rm < M)[:, None] & (rn < N)[None, :] | |
output = tl.libdevice.llrint(127. * (a * absmax_inv)) | |
tl.store(B, output, mask=mask) | |
def quantize_global_transpose(input): | |
absmax = input.abs().max().unsqueeze(0) | |
absmax_inv = 1./ absmax | |
M, N = input.shape | |
out = torch.empty(N, M, device='cuda', dtype=torch.int8) | |
assert out.size(0) == N and out.size(1) == M | |
assert input.stride(0) == 1 or input.stride(1) == 1 | |
assert out.stride(0) == 1 or out.stride(1) == 1 | |
grid = lambda META: (triton.cdiv(M, META['BLOCK_M']) * triton.cdiv(N, META['BLOCK_N']),) | |
_quantize_global_transpose[grid](input, absmax_inv, out, input.stride(0), input.stride(1), out.stride(0), out.stride(1), M, N) | |
return out, absmax | |