# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch.nn as nn from .imports import is_fp8_available if is_fp8_available(): import transformer_engine.pytorch as te def convert_model(model, to_transformer_engine=True, _convert_linear=True, _convert_ln=True): """ Recursively converts the linear and layernorm layers of a model to their `transformers_engine` counterpart. """ if not is_fp8_available(): raise ImportError("Using `convert_model` requires transformer_engine to be installed.") for name, module in model.named_children(): if isinstance(module, nn.Linear) and to_transformer_engine and _convert_linear: # Return early if the linear layer weights are not multiples of 16 if any(p % 16 != 0 for p in module.weight.shape): return has_bias = module.bias is not None te_module = te.Linear( module.in_features, module.out_features, bias=has_bias, params_dtype=module.weight.dtype ) te_module.weight.data = module.weight.data.clone() if has_bias: te_module.bias.data = module.bias.data.clone() setattr(model, name, te_module) elif isinstance(module, nn.LayerNorm) and to_transformer_engine and _convert_ln: te_module = te.LayerNorm(module.normalized_shape[0], eps=module.eps, params_dtype=module.weight.dtype) te_module.weight.data = module.weight.data.clone() te_module.bias.data = module.bias.data.clone() setattr(model, name, te_module) elif isinstance(module, te.Linear) and not to_transformer_engine and _convert_linear: has_bias = module.bias is not None new_module = nn.Linear( module.in_features, module.out_features, bias=has_bias, params_dtype=module.weight.dtype ) new_module.weight.data = module.weight.data.clone() if has_bias: new_module.bias.data = module.bias.data.clone() setattr(model, name, new_module) elif isinstance(module, te.LayerNorm) and not to_transformer_engine and _convert_ln: new_module = nn.LayerNorm(module.normalized_shape[0], eps=module.eps, params_dtype=module.weight.dtype) new_module.weight.data = module.weight.data.clone() new_module.bias.data = module.bias.data.clone() setattr(model, name, new_module) else: convert_model( module, to_transformer_engine=to_transformer_engine, _convert_linear=_convert_linear, _convert_ln=_convert_ln, ) def has_transformer_engine_layers(model): """ Returns whether a given model has some `transformer_engine` layer or not. """ if not is_fp8_available(): raise ImportError("Using `has_transformer_engine_layers` requires transformer_engine to be installed.") for m in model.modules(): if isinstance(m, (te.LayerNorm, te.Linear)): return True return False