File size: 26,236 Bytes
336a071
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
# ----------------------Importing libraries----------------------

import streamlit as st
from streamlit_pills import pills
import pandas as pd
import openai

# Imports for AgGrid
from st_aggrid import AgGrid, GridUpdateMode, JsCode
from st_aggrid.grid_options_builder import GridOptionsBuilder

# ----------------------Importing utils.py----------------------

# For Snowflake (from Tony's utils.py)
import io
from utils import (
    connect_to_snowflake,
    load_data_to_snowflake,
    load_data_to_postgres,
    connect_to_postgres,
)

# ----------------------Page config--------------------------------------

st.set_page_config(page_title="GPT3 Dataset Generator", page_icon="πŸ€–")

# ----------------------Sidebar section--------------------------------

# st.image(
#    "Gifs/header.gif",
# )

st.image("Gifs/boat_new.gif")

c30, c31, c32 = st.columns([0.2, 0.1, 3])

with c30:

    st.caption("")

    st.image("openai.png", width=60)

with c32:

    st.title("GPT3 Dataset Generator")

st.write(
    "This app generates datasets using GPT3. It was created for the ❄️ Snowflake Snowvation Hackathon"
)

tabMain, tabInfo, tabTo_dos = st.tabs(["Main", "Info", "To-do's"])

with tabInfo:
    st.write("")
    st.write("")

    st.subheader("πŸ€– What is GPT-3?")
    st.markdown(
        "[GPT-3](https://en.wikipedia.org/wiki/GPT-3) is a large language generation model developed by [OpenAI](https://openai.com/) that can generate human-like text. It has a capacity of 175 billion parameters and is trained on a vast dataset of internet text. It can be used for tasks such as language translation, chatbot language generation, and content generation etc."
    )

    st.subheader("🎈 What is Streamlit?")
    st.markdown(
        "[Streamlit](https://streamlit.io) is an open-source Python library that allows users to create interactive, web-based data visualization and machine learning applications without the need for extensive web development knowledge"
    )

    st.write("---")

    st.subheader("πŸ“– Resources")
    st.markdown(
        """
    - OpenAI
        - [OpenAI Playground](https://beta.openai.com/playground)
        - [OpenAI Documentation](https://beta.openai.com/docs)    
    - Streamlit
        - [Documentation](https://docs.streamlit.io/)
        - [Gallery](https://streamlit.io/gallery)
        - [Cheat sheet](https://docs.streamlit.io/library/cheatsheet)
        - [Book](https://www.amazon.com/dp/180056550X) (Getting Started with Streamlit for Data Science)
        - Deploy your apps using [Streamlit Community Cloud](https://streamlit.io/cloud) in just a few clicks 
    """
    )

with tabTo_dos:

    with st.expander("To-do", expanded=True):
        st.write(
            """
        - [p2] Currently, the results are displayed even if the submit button isn't pressed.
        - [p2] There is still an issue with the index where the first element from the JSON is not being displayed.
        - [Post Hackathon] To limit the number of API calls and costs, let's cap the maximum number - of results to 5. Alternatively, we can consider removing the free API key.

        """
        )
        st.write("")

    with st.expander("Done", expanded=True):
        st.write(
            """
        - [p2] Check if the Json file is working
        - [p2] On Github, remove any unused images and GIFs.
        - [p1] Add that for postgress - localhost is required
        - [p2] Rename the CSV and JSON as per the st-pills variable
        - [p2] Change the color of the small arrow
        - [p1] Adjust the size of the Gifs
        - Add a streamlit badge in the `ReadMe` file
        - Add the message "Please enter your API key or choose the `Free Key` option."
        - Include a `ReadMe` file
        - Add a section for the Snowflake credentials
        - Remove password from the Python file
        - Add screenshots to the `ReadMe` file
        - Include forms in the snowflake postgres section
        - Remove the hashed code in the Python file
        - Include additional information in the 'info' tab
        - p1] Fix the download issue by sorting it via session state
        - [p1] Make the dataframe from this app editable
        - Add more gifs to the app
        - Change the color scheme to Snowflake Blue
        - Include a section for Snowflake credentials
        - Change the colors of the arrows, using this tool (https://lottiefiles.com/lottie-to-gif/convert)
        - Try new prompts and implement the best ones
        - Add a config file for the color scheme
        - Include an option menu using this tool (https://github.com/victoryhb/streamlit-option-menu)
        - Display a message when the API key is not provided
        - Fix the arrow and rearrange the layout for the API key message
        - Check and improve the quality of the prompt output
        - Send the app to Tony and upload it to GitHub
        - Re-arrange the data on the sidebar
        - Change the colors of both gifs to match the overall color scheme
        - Add context about the app being part of the snowvation project
        - Add a button to convert the data to JSON format
        - Include the Snowflake logo
        - Add a submit button to block API calls unless pressed
        - Add a tab with additional information
        - Resize the columns in the st.form section
        - Add the ability to add the dataset to Snowflake
        - Create a section with pills, showcasing examples
        - Change the main emoji
        - Change the emoji in the tab (page_icon)
        - [INFO] Sort out the issue with credits



        """
        )
        st.write("")

    with st.expander("Not needed", expanded=True):
        st.write(
            """
            - Check index issue in readcsv (not an issue as I've changed the script)
            - Add the mouse gif (doesn't fit)
            - Ask Lukas - automatically resize the columns of a DataFrame
        """
        )
        st.write("")

    st.write("")
    st.write("")
    st.write("")


with tabMain:

    key_choice = st.sidebar.radio(
        "",
        (
            "Your Key",
            "Free Key (capped)",
        ),
        horizontal=True,
    )

    if key_choice == "Your Key":

        API_Key = st.sidebar.text_input(
            "First, enter your OpenAI API key", type="password"
        )

    elif key_choice == "Free Key (capped)":

        API_Key = st.secrets["API_KEY"]

    image_arrow = st.sidebar.image(
        "Gifs/blue_grey_arrow.gif",
    )

    if key_choice == "Free Key (capped)":

        image_arrow.empty()

    else:

        st.write("")

        st.sidebar.caption(
            "No OpenAI API key? Get yours [here!](https://openai.com/blog/api-no-waitlist/)"
        )
        pass

    st.write("")

    c30, c31, c32 = st.columns([0.2, 0.1, 3])

    st.subheader("β‘  Build your dataset")

    example = pills(
        "",
        [
            "Sci-fi Movies",
            "Animals",
            "Pop Songs",
            "POTUS's Twitter",
            "Blank",
        ],
        [
            "🍿",
            "🐎",
            "🎡",
            "πŸ‡ΊπŸ‡Έ",
            "πŸ‘»",
        ],
        label_visibility="collapsed",
    )

    if "counter" not in st.session_state:
        st.session_state.counter = 0

    def increment():
        st.session_state.counter += 1

    if example == "Sci-fi Movies":

        with st.form("my_form"):

            text_input = st.text_input(
                "What is the topic of your dataset?", value="Sci-fi movies"
            )

            col1, col2, col3 = st.columns(3, gap="small")

            with col1:
                column_01 = st.text_input("1st column", value="Title")

            with col2:
                column_02 = st.text_input("2nd column", value="Year")

            with col3:
                column_03 = st.text_input("3rd column", value="PG rating")

            col1, col2 = st.columns(2, gap="medium")

            with col1:
                number = st.number_input(
                    "How many rows do you want?",
                    value=5,
                    min_value=1,
                    max_value=20,
                    step=5,
                    help="The maximum number of rows is 20.",
                )

            with col2:
                engine = st.radio(
                    "GPT3 engine",
                    (
                        "Davinci",
                        "Curie",
                        "Babbage",
                    ),
                    horizontal=True,
                    help="Davinci is the most powerful engine, but it's also the slowest. Curie is the fastest, but it's also the least powerful. Babbage is somewhere in the middle.",
                )

                if engine == "Davinci":
                    engine = "davinci-instruct-beta-v3"
                elif engine == "Curie":
                    engine = "curie-instruct-beta-v2"
                elif engine == "Babbage":
                    engine = "babbage-instruct-beta"

            st.write("")

            submitted = st.form_submit_button("Build my dataset! ✨", on_click=increment)

    elif example == "Animals":

        with st.form("my_form"):

            text_input = st.text_input(
                "What is the topic of your dataset?", value="Fastest animals on earth"
            )

            col1, col2, col3 = st.columns(3, gap="small")

            with col1:
                column_01 = st.text_input("1st column", value="Animal")

            with col2:
                column_02 = st.text_input("2nd column", value="Speed")

            with col3:
                column_03 = st.text_input("3rd column", value="Weight")

            col1, col2 = st.columns(2, gap="medium")

            with col1:
                number = st.number_input(
                    "How many rows do you want?",
                    value=5,
                    min_value=1,
                    max_value=20,
                    step=5,
                    help="The maximum number of rows is 50.",
                )

            with col2:
                engine = st.radio(
                    "GPT3 engine",
                    (
                        "Davinci",
                        "Curie",
                        "Babbage",
                    ),
                    horizontal=True,
                    help="Davinci is the most powerful engine, but it's also the slowest. Curie is the fastest, but it's also the least powerful. Babbage is somewhere in the middle.",
                )

                if engine == "Davinci":
                    engine = "davinci-instruct-beta-v3"
                elif engine == "Curie":
                    engine = "curie-instruct-beta-v2"
                elif engine == "Babbage":
                    engine = "babbage-instruct-beta"

            st.write("")

            submitted = st.form_submit_button("Build my dataset! ✨", on_click=increment)

    elif example == "Stocks":

        with st.form("my_form"):

            text_input = st.text_input(
                "What is the topic of your dataset?", value="Stocks"
            )

            col1, col2, col3 = st.columns(3, gap="small")

            with col1:
                column_01 = st.text_input("1st column", value="Ticker")

            with col2:
                column_02 = st.text_input("2nd column", value="Price")

            with col3:
                column_03 = st.text_input("3rd column", value="Exchange")

            col1, col2 = st.columns(2, gap="medium")

            with col1:
                number = st.number_input(
                    "How many rows do you want?",
                    value=5,
                    min_value=1,
                    max_value=20,
                    step=5,
                    help="The maximum number of rows is 50.",
                )

            with col2:
                engine = st.radio(
                    "GPT3 engine",
                    (
                        "Davinci",
                        "Curie",
                        "Babbage",
                    ),
                    horizontal=True,
                    help="Davinci is the most powerful engine, but it's also the slowest. Curie is the fastest, but it's also the least powerful. Babbage is somewhere in the middle.",
                )

                if engine == "Davinci":
                    engine = "davinci-instruct-beta-v3"
                elif engine == "Curie":
                    engine = "curie-instruct-beta-v2"
                elif engine == "Babbage":
                    engine = "babbage-instruct-beta"

            st.write("")

            submitted = st.form_submit_button("Build my dataset! ✨", on_click=increment)

    elif example == "POTUS's Twitter":

        with st.form("my_form"):

            text_input = st.text_input(
                "What is the topic of your dataset?", value="POTUS's Twitter accounts"
            )

            col1, col2, col3 = st.columns(3, gap="small")

            with col1:
                column_01 = st.text_input("1st column", value="Name")

            with col2:
                column_02 = st.text_input("2nd column", value="Twitter handle")

            with col3:
                column_03 = st.text_input("3rd column", value="# of followers")

            col1, col2 = st.columns(2, gap="medium")

            with col1:
                number = st.number_input(
                    "How many rows do you want?",
                    value=5,
                    min_value=1,
                    max_value=20,
                    step=5,
                    help="The maximum number of rows is 50.",
                )

            with col2:
                engine = st.radio(
                    "GPT3 engine",
                    (
                        "Davinci",
                        "Curie",
                        "Babbage",
                    ),
                    horizontal=True,
                    help="Davinci is the most powerful engine, but it's also the slowest. Curie is the fastest, but it's also the least powerful. Babbage is somewhere in the middle.",
                )

                if engine == "Davinci":
                    engine = "davinci-instruct-beta-v3"
                elif engine == "Curie":
                    engine = "curie-instruct-beta-v2"
                elif engine == "Babbage":
                    engine = "babbage-instruct-beta"

            st.write("")

            submitted = st.form_submit_button("Build my dataset! ✨")

    elif example == "Pop Songs":

        with st.form("my_form"):

            text_input = st.text_input(
                "What is the topic of your dataset?",
                value="Most famous songs of all time",
            )

            col1, col2, col3 = st.columns(3, gap="small")

            with col1:
                column_01 = st.text_input("1st column", value="Song")

            with col2:
                column_02 = st.text_input("2nd column", value="Artist")

            with col3:
                column_03 = st.text_input("3rd column", value="Genre")

            col1, col2 = st.columns(2, gap="medium")

            with col1:
                number = st.number_input(
                    "How many rows do you want?",
                    value=5,
                    min_value=1,
                    max_value=20,
                    step=5,
                    help="The maximum number of rows is 50.",
                )

            with col2:
                engine = st.radio(
                    "GPT3 engine",
                    (
                        "Davinci",
                        "Curie",
                        "Babbage",
                    ),
                    horizontal=True,
                    help="Davinci is the most powerful engine, but it's also the slowest. Curie is the fastest, but it's also the least powerful. Babbage is somewhere in the middle.",
                )

                if engine == "Davinci":
                    engine = "davinci-instruct-beta-v3"
                elif engine == "Curie":
                    engine = "curie-instruct-beta-v2"
                elif engine == "Babbage":
                    engine = "babbage-instruct-beta"

            st.write("")

            submitted = st.form_submit_button("Build my dataset! ✨")

    elif example == "Blank":

        with st.form("my_form"):

            text_input = st.text_input("What is the topic of your dataset?", value="")

            col1, col2, col3 = st.columns(3, gap="small")

            with col1:
                column_01 = st.text_input("1st column", value="")

            with col2:
                column_02 = st.text_input("2nd column", value="")

            with col3:
                column_03 = st.text_input("3rd column", value="")

            col1, col2 = st.columns(2, gap="medium")

            with col1:
                number = st.number_input(
                    "How many rows do you want?",
                    value=5,
                    min_value=1,
                    max_value=20,
                    step=5,
                    help="The maximum number of rows is 50.",
                )

            with col2:
                engine = st.radio(
                    "GPT3 engine",
                    (
                        "Davinci",
                        "Curie",
                        "Babbage",
                    ),
                    horizontal=True,
                    help="Davinci is the most powerful engine, but it's also the slowest. Curie is the fastest, but it's also the least powerful. Babbage is somewhere in the middle.",
                )

                if engine == "Davinci":
                    engine = "davinci-instruct-beta-v3"
                elif engine == "Curie":
                    engine = "curie-instruct-beta-v2"
                elif engine == "Babbage":
                    engine = "babbage-instruct-beta"

            st.write("")

            submitted = st.form_submit_button("Build my dataset! ✨")

    # ----------------------API key section----------------------------------

    number = number + 1

    if not API_Key and not submitted:

        st.stop()

    if not API_Key and submitted:

        st.info("Please enter your API key or choose the `Free Key` option.")
        st.stop()

    if st.session_state.counter >= 100:

        pass

    # ----------------------API key section----------------------------------

    if not submitted and st.session_state.counter == 0:

        c30, c31, c32 = st.columns([1, 0.01, 4])

        with c30:

            st.image("Gifs/arrow_small_new.gif")
            st.caption("")

        with c32:

            st.caption("")
            st.caption("")

            st.info(
                "Enter your dataset's criteria and click the button to generate it."
            )

            st.stop()

    elif st.session_state.counter > 0:

        c30, c31, c32 = st.columns([1, 0.9, 3])

        openai.api_key = API_Key

        # ----------------------API call section----------------------------------

        response = openai.Completion.create(
            model=engine,
            prompt=f"Please provide a list of the top {number} {text_input} along with the following information in a three-column spreadsheet: {column_01}, {column_02}, and {column_03}. The columns should be labeled as follows: {column_01} | {column_02} | {column_03}",
            temperature=0.5,
            max_tokens=1707,
            top_p=1,
            best_of=2,
            frequency_penalty=0,
            presence_penalty=0,
        )

        st.write("___")

        st.subheader("β‘‘ Check the results")

        with st.expander("See the API Json output"):
            response

        output_code = response["choices"][0]["text"]

        # ----------------------Dataframe section----------------------------------

        # create pandas DataFrame from string
        df = pd.read_csv(io.StringIO(output_code), sep="|")
        # get the number of columns in the dataframe
        num_columns = len(df.columns)

        # create a list of column names
        column_names = ["Column {}".format(i) for i in range(1, num_columns + 1)]

        # add the header to the dataframe
        df.columns = column_names

        # specify the mapping of old column names to new column names
        column_mapping = {
            "Column 1": column_01,
            "Column 2": column_02,
            "Column 3": column_03,
        }

        # rename the columns of the dataframe
        df = df.rename(columns=column_mapping)

        st.write("")

        # ----------------------AgGrid section----------------------------------

        gd = GridOptionsBuilder.from_dataframe(df)
        gd.configure_pagination(enabled=True)
        gd.configure_default_column(editable=True, groupable=True)
        gd.configure_selection(selection_mode="multiple")
        gridoptions = gd.build()
        grid_table = AgGrid(
            df,
            gridOptions=gridoptions,
            update_mode=GridUpdateMode.SELECTION_CHANGED,
            theme="material",
        )

        # df

        # ----------------------Download section--------------------------------------

        c30, c31, c32, c33 = st.columns([1, 0.01, 1, 2.5])

        with c30:

            @st.cache
            def convert_df(df):
                return df.to_csv().encode("utf-8")

            csv = convert_df(df)

            st.download_button(
                label="Download CSV",
                data=csv,
                file_name=f"{example} dataset .csv",
                mime="text/csv",
            )

        with c32:

            json_string = df.to_json(orient="records")

            st.download_button(
                label="Download JSON",
                data=json_string,
                file_name="data_set_sample.json",
                mime="text/csv",
            )

    st.write("___")

    st.subheader("β‘’ Load data to Databases")

    # Data to load to database(s)
    # df = pd.read_csv("philox-testset-1.csv")

    # Get user input for data storage option
    storage_option = st.radio(
        "Select data storage option:",
        (
            "Snowflake",
            "PostgreSQL",
        ),
        horizontal=True,
    )

    # Get user input for data storage option
    # Snowflake = st.selectbox(
    #    "Select data storage option:", ["Snowflake", "Snowflake"]
    # )

    @st.cache(allow_output_mutation=True)
    def reset_form_fields():
        user = ""
        password = ""
        account = ""
        warehouse = ""
        database = ""
        schema = ""
        table = ""
        host = ""
        port = ""

    if storage_option == "Snowflake":
        st.subheader("`Enter Snowflake Credentials`πŸ‘‡")
        # Get user input for Snowflake credentials

        with st.form("my_form_db"):

            col1, col2 = st.columns(2, gap="small")

            with col1:
                user = st.text_input("Username:", value="TONY")
            with col2:
                password = st.text_input("Password:", type="password")

            with col1:
                account = st.text_input("Account:", value="jn27194.us-east4.gcp")
            with col2:
                warehouse = st.text_input("Warehouse:", value="NAH")

            with col1:
                database = st.text_input("Database:", value="SNOWVATION")
            with col2:
                schema = st.text_input("Schema:", value="PUBLIC")

            table = st.text_input("Table:")

            st.write("")

            submitted = st.form_submit_button("Load to Snowflake")

        # Load the data to Snowflake
        if submitted:
            # if st.button("Load data to Snowflake"):
            if (
                user
                and password
                and account
                and warehouse
                and database
                and schema
                and table
            ):
                conn = connect_to_snowflake(
                    username=user,
                    password=password,
                    account=account,
                    warehouse=warehouse,
                    database=database,
                    schema=schema,
                )
                if conn:
                    load_data_to_snowflake(df, conn, table)
            else:
                st.warning("Please enter all Snowflake credentials")

    elif storage_option == "PostgreSQL":
        st.subheader("`Enter PostgreSQL Credentials`πŸ‘‡")
        st.error("Localhost only")
        # Get user input for PostgreSQL credentials

        with st.form("my_form_db"):

            col1, col2 = st.columns(2, gap="small")

            with col1:
                user = st.text_input("Username:", value="postgres")
            with col2:
                password = st.text_input("Password:", type="password")
            with col1:
                host = st.selectbox("Host:", ["localhost", "other"])
                if host == "other":
                    host = st.text_input("Enter host:")
            with col2:
                port = st.text_input("Port:", value="5432")
            with col1:
                database = st.text_input("Database:", value="snowvation")
            with col2:
                table = st.text_input("Table:")

            st.write("")

            submitted = st.form_submit_button("Load to PostgreSQL")

        # Load the data to PostgreSQL
        # if st.button("Load data to PostgreSQL"):
        if submitted:
            if user and password and host and port and database and table:
                conn = connect_to_postgres(
                    username=user,
                    password=password,
                    host=host,
                    port=port,
                    database=database,
                )
                if conn:
                    load_data_to_postgres(df, conn, table)
            else:
                st.warning("Please enter all PostgreSQL credentials and table name")

    # Reset form fields when storage_option changes
    reset_form_fields()