pikto's picture
Update app.py
0fecb01
raw
history blame
26.5 kB
# ----------------------Importing libraries----------------------
import streamlit as st
from streamlit_pills import pills
import pandas as pd
import openai
# Imports for AgGrid
from st_aggrid import AgGrid, GridUpdateMode, JsCode
from st_aggrid.grid_options_builder import GridOptionsBuilder
# ----------------------Importing utils.py----------------------
# For Snowflake (from Tony's utils.py)
import io
from utils import (
connect_to_snowflake,
load_data_to_snowflake,
load_data_to_postgres,
connect_to_postgres,
)
# ----------------------Page config--------------------------------------
st.set_page_config(page_title="GPT3 Dataset Generator", page_icon="πŸ€–")
# ----------------------Sidebar section--------------------------------
# st.image(
# "Gifs/header.gif",
# )
st.image("Gifs/boat_new.gif")
#API_Key = openai-api-key
c30, c31, c32 = st.columns([0.2, 0.1, 3])
#################
@st.cache_data # πŸ‘ˆ Add the caching decorator
def load_data(url):
df = pd.read_csv(url)
return df
df = load_data("https://github.com/plotly/datasets/raw/master/uber-rides-data1.csv")
st.dataframe(df)
#st.button("Rerun")
################
with c30:
st.caption("")
st.image("openai.png", width=60)
with c32:
st.title("GPT3 Dataset Generator")
st.write(
"This app generates datasets using GPT3. It was created for the ❄️ Snowflake Snowvation Hackathon"
)
tabMain, tabInfo, tabTo_dos = st.tabs(["Main", "Info", "To-do's"])
with tabInfo:
st.write("")
st.write("")
st.subheader("πŸ€– What is GPT-3?")
st.markdown(
"[GPT-3](https://en.wikipedia.org/wiki/GPT-3) is a large language generation model developed by [OpenAI](https://openai.com/) that can generate human-like text. It has a capacity of 175 billion parameters and is trained on a vast dataset of internet text. It can be used for tasks such as language translation, chatbot language generation, and content generation etc."
)
st.subheader("🎈 What is Streamlit?")
st.markdown(
"[Streamlit](https://streamlit.io) is an open-source Python library that allows users to create interactive, web-based data visualization and machine learning applications without the need for extensive web development knowledge"
)
st.write("---")
st.subheader("πŸ“– Resources")
st.markdown(
"""
- OpenAI
- [OpenAI Playground](https://beta.openai.com/playground)
- [OpenAI Documentation](https://beta.openai.com/docs)
- Streamlit
- [Documentation](https://docs.streamlit.io/)
- [Gallery](https://streamlit.io/gallery)
- [Cheat sheet](https://docs.streamlit.io/library/cheatsheet)
- [Book](https://www.amazon.com/dp/180056550X) (Getting Started with Streamlit for Data Science)
- Deploy your apps using [Streamlit Community Cloud](https://streamlit.io/cloud) in just a few clicks
"""
)
with tabTo_dos:
with st.expander("To-do", expanded=True):
st.write(
"""
- [p2] Currently, the results are displayed even if the submit button isn't pressed.
- [p2] There is still an issue with the index where the first element from the JSON is not being displayed.
- [Post Hackathon] To limit the number of API calls and costs, let's cap the maximum number - of results to 5. Alternatively, we can consider removing the free API key.
"""
)
st.write("")
with st.expander("Done", expanded=True):
st.write(
"""
- [p2] Check if the Json file is working
- [p2] On Github, remove any unused images and GIFs.
- [p1] Add that for postgress - localhost is required
- [p2] Rename the CSV and JSON as per the st-pills variable
- [p2] Change the color of the small arrow
- [p1] Adjust the size of the Gifs
- Add a streamlit badge in the `ReadMe` file
- Add the message "Please enter your API key or choose the `Free Key` option."
- Include a `ReadMe` file
- Add a section for the Snowflake credentials
- Remove password from the Python file
- Add screenshots to the `ReadMe` file
- Include forms in the snowflake postgres section
- Remove the hashed code in the Python file
- Include additional information in the 'info' tab
- p1] Fix the download issue by sorting it via session state
- [p1] Make the dataframe from this app editable
- Add more gifs to the app
- Change the color scheme to Snowflake Blue
- Include a section for Snowflake credentials
- Change the colors of the arrows, using this tool (https://lottiefiles.com/lottie-to-gif/convert)
- Try new prompts and implement the best ones
- Add a config file for the color scheme
- Include an option menu using this tool (https://github.com/victoryhb/streamlit-option-menu)
- Display a message when the API key is not provided
- Fix the arrow and rearrange the layout for the API key message
- Check and improve the quality of the prompt output
- Send the app to Tony and upload it to GitHub
- Re-arrange the data on the sidebar
- Change the colors of both gifs to match the overall color scheme
- Add context about the app being part of the snowvation project
- Add a button to convert the data to JSON format
- Include the Snowflake logo
- Add a submit button to block API calls unless pressed
- Add a tab with additional information
- Resize the columns in the st.form section
- Add the ability to add the dataset to Snowflake
- Create a section with pills, showcasing examples
- Change the main emoji
- Change the emoji in the tab (page_icon)
- [INFO] Sort out the issue with credits
"""
)
st.write("")
with st.expander("Not needed", expanded=True):
st.write(
"""
- Check index issue in readcsv (not an issue as I've changed the script)
- Add the mouse gif (doesn't fit)
- Ask Lukas - automatically resize the columns of a DataFrame
"""
)
st.write("")
st.write("")
st.write("")
st.write("")
with tabMain:
key_choice = st.sidebar.radio(
"",
(
"Your Key",
"Free Key (capped)",
),
horizontal=True,
)
if key_choice == "Your Key":
API_Key = st.sidebar.text_input(
"First, enter your OpenAI API key", type="password"
)
elif key_choice == "Free Key (capped)":
API_Key = st.secrets["API_KEY"]
image_arrow = st.sidebar.image(
"Gifs/blue_grey_arrow.gif",
)
if key_choice == "Free Key (capped)":
image_arrow.empty()
else:
st.write("")
st.sidebar.caption(
"No OpenAI API key? Get yours [here!](https://openai.com/blog/api-no-waitlist/)"
)
pass
st.write("")
c30, c31, c32 = st.columns([0.2, 0.1, 3])
st.subheader("β‘  Build your dataset")
example = pills(
"",
[
"Sci-fi Movies",
"Animals",
"Pop Songs",
"POTUS's Twitter",
"Blank",
],
[
"🍿",
"🐎",
"🎡",
"πŸ‡ΊπŸ‡Έ",
"πŸ‘»",
],
label_visibility="collapsed",
)
if "counter" not in st.session_state:
st.session_state.counter = 0
def increment():
st.session_state.counter += 1
if example == "Sci-fi Movies":
with st.form("my_form"):
text_input = st.text_input(
"What is the topic of your dataset?", value="Sci-fi movies"
)
col1, col2, col3 = st.columns(3, gap="small")
with col1:
column_01 = st.text_input("1st column", value="Title")
with col2:
column_02 = st.text_input("2nd column", value="Year")
with col3:
column_03 = st.text_input("3rd column", value="PG rating")
col1, col2 = st.columns(2, gap="medium")
with col1:
number = st.number_input(
"How many rows do you want?",
value=5,
min_value=1,
max_value=20,
step=5,
help="The maximum number of rows is 20.",
)
with col2:
engine = st.radio(
"GPT3 engine",
(
"Davinci",
"Curie",
"Babbage",
),
horizontal=True,
help="Davinci is the most powerful engine, but it's also the slowest. Curie is the fastest, but it's also the least powerful. Babbage is somewhere in the middle.",
)
if engine == "Davinci":
engine = "davinci-instruct-beta-v3"
elif engine == "Curie":
engine = "curie-instruct-beta-v2"
elif engine == "Babbage":
engine = "babbage-instruct-beta"
st.write("")
submitted = st.form_submit_button("Build my dataset! ✨", on_click=increment)
elif example == "Animals":
with st.form("my_form"):
text_input = st.text_input(
"What is the topic of your dataset?", value="Fastest animals on earth"
)
col1, col2, col3 = st.columns(3, gap="small")
with col1:
column_01 = st.text_input("1st column", value="Animal")
with col2:
column_02 = st.text_input("2nd column", value="Speed")
with col3:
column_03 = st.text_input("3rd column", value="Weight")
col1, col2 = st.columns(2, gap="medium")
with col1:
number = st.number_input(
"How many rows do you want?",
value=5,
min_value=1,
max_value=20,
step=5,
help="The maximum number of rows is 50.",
)
with col2:
engine = st.radio(
"GPT3 engine",
(
"Davinci",
"Curie",
"Babbage",
),
horizontal=True,
help="Davinci is the most powerful engine, but it's also the slowest. Curie is the fastest, but it's also the least powerful. Babbage is somewhere in the middle.",
)
if engine == "Davinci":
engine = "davinci-instruct-beta-v3"
elif engine == "Curie":
engine = "curie-instruct-beta-v2"
elif engine == "Babbage":
engine = "babbage-instruct-beta"
st.write("")
submitted = st.form_submit_button("Build my dataset! ✨", on_click=increment)
elif example == "Stocks":
with st.form("my_form"):
text_input = st.text_input(
"What is the topic of your dataset?", value="Stocks"
)
col1, col2, col3 = st.columns(3, gap="small")
with col1:
column_01 = st.text_input("1st column", value="Ticker")
with col2:
column_02 = st.text_input("2nd column", value="Price")
with col3:
column_03 = st.text_input("3rd column", value="Exchange")
col1, col2 = st.columns(2, gap="medium")
with col1:
number = st.number_input(
"How many rows do you want?",
value=5,
min_value=1,
max_value=20,
step=5,
help="The maximum number of rows is 50.",
)
with col2:
engine = st.radio(
"GPT3 engine",
(
"Davinci",
"Curie",
"Babbage",
),
horizontal=True,
help="Davinci is the most powerful engine, but it's also the slowest. Curie is the fastest, but it's also the least powerful. Babbage is somewhere in the middle.",
)
if engine == "Davinci":
engine = "davinci-instruct-beta-v3"
elif engine == "Curie":
engine = "curie-instruct-beta-v2"
elif engine == "Babbage":
engine = "babbage-instruct-beta"
st.write("")
submitted = st.form_submit_button("Build my dataset! ✨", on_click=increment)
elif example == "POTUS's Twitter":
with st.form("my_form"):
text_input = st.text_input(
"What is the topic of your dataset?", value="POTUS's Twitter accounts"
)
col1, col2, col3 = st.columns(3, gap="small")
with col1:
column_01 = st.text_input("1st column", value="Name")
with col2:
column_02 = st.text_input("2nd column", value="Twitter handle")
with col3:
column_03 = st.text_input("3rd column", value="# of followers")
col1, col2 = st.columns(2, gap="medium")
with col1:
number = st.number_input(
"How many rows do you want?",
value=5,
min_value=1,
max_value=20,
step=5,
help="The maximum number of rows is 50.",
)
with col2:
engine = st.radio(
"GPT3 engine",
(
"Davinci",
"Curie",
"Babbage",
),
horizontal=True,
help="Davinci is the most powerful engine, but it's also the slowest. Curie is the fastest, but it's also the least powerful. Babbage is somewhere in the middle.",
)
if engine == "Davinci":
engine = "davinci-instruct-beta-v3"
elif engine == "Curie":
engine = "curie-instruct-beta-v2"
elif engine == "Babbage":
engine = "babbage-instruct-beta"
st.write("")
submitted = st.form_submit_button("Build my dataset! ✨")
elif example == "Pop Songs":
with st.form("my_form"):
text_input = st.text_input(
"What is the topic of your dataset?",
value="Most famous songs of all time",
)
col1, col2, col3 = st.columns(3, gap="small")
with col1:
column_01 = st.text_input("1st column", value="Song")
with col2:
column_02 = st.text_input("2nd column", value="Artist")
with col3:
column_03 = st.text_input("3rd column", value="Genre")
col1, col2 = st.columns(2, gap="medium")
with col1:
number = st.number_input(
"How many rows do you want?",
value=5,
min_value=1,
max_value=20,
step=5,
help="The maximum number of rows is 50.",
)
with col2:
engine = st.radio(
"GPT3 engine",
(
"Davinci",
"Curie",
"Babbage",
),
horizontal=True,
help="Davinci is the most powerful engine, but it's also the slowest. Curie is the fastest, but it's also the least powerful. Babbage is somewhere in the middle.",
)
if engine == "Davinci":
engine = "davinci-instruct-beta-v3"
elif engine == "Curie":
engine = "curie-instruct-beta-v2"
elif engine == "Babbage":
engine = "babbage-instruct-beta"
st.write("")
submitted = st.form_submit_button("Build my dataset! ✨")
elif example == "Blank":
with st.form("my_form"):
text_input = st.text_input("What is the topic of your dataset?", value="")
col1, col2, col3 = st.columns(3, gap="small")
with col1:
column_01 = st.text_input("1st column", value="")
with col2:
column_02 = st.text_input("2nd column", value="")
with col3:
column_03 = st.text_input("3rd column", value="")
col1, col2 = st.columns(2, gap="medium")
with col1:
number = st.number_input(
"How many rows do you want?",
value=5,
min_value=1,
max_value=20,
step=5,
help="The maximum number of rows is 50.",
)
with col2:
engine = st.radio(
"GPT3 engine",
(
"Davinci",
"Curie",
"Babbage",
),
horizontal=True,
help="Davinci is the most powerful engine, but it's also the slowest. Curie is the fastest, but it's also the least powerful. Babbage is somewhere in the middle.",
)
if engine == "Davinci":
engine = "davinci-instruct-beta-v3"
elif engine == "Curie":
engine = "curie-instruct-beta-v2"
elif engine == "Babbage":
engine = "babbage-instruct-beta"
st.write("")
submitted = st.form_submit_button("Build my dataset! ✨")
# ----------------------API key section----------------------------------
number = number + 1
if not API_Key and not submitted:
st.stop()
if not API_Key and submitted:
st.info("Please enter your API key or choose the `Free Key` option.")
st.stop()
if st.session_state.counter >= 100:
pass
# ----------------------API key section----------------------------------
if not submitted and st.session_state.counter == 0:
c30, c31, c32 = st.columns([1, 0.01, 4])
with c30:
st.image("Gifs/arrow_small_new.gif")
st.caption("")
with c32:
st.caption("")
st.caption("")
st.info(
"Enter your dataset's criteria and click the button to generate it."
)
st.stop()
elif st.session_state.counter > 0:
c30, c31, c32 = st.columns([1, 0.9, 3])
openai.api_key = API_Key
# ----------------------API call section----------------------------------
response = openai.Completion.create(
model=engine,
prompt=f"Please provide a list of the top {number} {text_input} along with the following information in a three-column spreadsheet: {column_01}, {column_02}, and {column_03}. The columns should be labeled as follows: {column_01} | {column_02} | {column_03}",
temperature=0.5,
max_tokens=1707,
top_p=1,
best_of=2,
frequency_penalty=0,
presence_penalty=0,
)
st.write("___")
st.subheader("β‘‘ Check the results")
with st.expander("See the API Json output"):
response
output_code = response["choices"][0]["text"]
# ----------------------Dataframe section----------------------------------
# create pandas DataFrame from string
df = pd.read_csv(io.StringIO(output_code), sep="|")
# get the number of columns in the dataframe
num_columns = len(df.columns)
# create a list of column names
column_names = ["Column {}".format(i) for i in range(1, num_columns + 1)]
# add the header to the dataframe
df.columns = column_names
# specify the mapping of old column names to new column names
column_mapping = {
"Column 1": column_01,
"Column 2": column_02,
"Column 3": column_03,
}
# rename the columns of the dataframe
df = df.rename(columns=column_mapping)
st.write("")
# ----------------------AgGrid section----------------------------------
gd = GridOptionsBuilder.from_dataframe(df)
gd.configure_pagination(enabled=True)
gd.configure_default_column(editable=True, groupable=True)
gd.configure_selection(selection_mode="multiple")
gridoptions = gd.build()
grid_table = AgGrid(
df,
gridOptions=gridoptions,
update_mode=GridUpdateMode.SELECTION_CHANGED,
theme="material",
)
# df
# ----------------------Download section--------------------------------------
c30, c31, c32, c33 = st.columns([1, 0.01, 1, 2.5])
with c30:
@st.cache
def convert_df(df):
return df.to_csv().encode("utf-8")
csv = convert_df(df)
st.download_button(
label="Download CSV",
data=csv,
file_name=f"{example} dataset .csv",
mime="text/csv",
)
with c32:
json_string = df.to_json(orient="records")
st.download_button(
label="Download JSON",
data=json_string,
file_name="data_set_sample.json",
mime="text/csv",
)
st.write("___")
st.subheader("β‘’ Load data to Databases")
# Data to load to database(s)
# df = pd.read_csv("philox-testset-1.csv")
# Get user input for data storage option
storage_option = st.radio(
"Select data storage option:",
(
"Snowflake",
"PostgreSQL",
),
horizontal=True,
)
# Get user input for data storage option
# Snowflake = st.selectbox(
# "Select data storage option:", ["Snowflake", "Snowflake"]
# )
@st.cache(allow_output_mutation=True)
def reset_form_fields():
user = ""
password = ""
account = ""
warehouse = ""
database = ""
schema = ""
table = ""
host = ""
port = ""
if storage_option == "Snowflake":
st.subheader("`Enter Snowflake Credentials`πŸ‘‡")
# Get user input for Snowflake credentials
with st.form("my_form_db"):
col1, col2 = st.columns(2, gap="small")
with col1:
user = st.text_input("Username:", value="TONY")
with col2:
password = st.text_input("Password:", type="password")
with col1:
account = st.text_input("Account:", value="jn27194.us-east4.gcp")
with col2:
warehouse = st.text_input("Warehouse:", value="NAH")
with col1:
database = st.text_input("Database:", value="SNOWVATION")
with col2:
schema = st.text_input("Schema:", value="PUBLIC")
table = st.text_input("Table:")
st.write("")
submitted = st.form_submit_button("Load to Snowflake")
# Load the data to Snowflake
if submitted:
# if st.button("Load data to Snowflake"):
if (
user
and password
and account
and warehouse
and database
and schema
and table
):
conn = connect_to_snowflake(
username=user,
password=password,
account=account,
warehouse=warehouse,
database=database,
schema=schema,
)
if conn:
load_data_to_snowflake(df, conn, table)
else:
st.warning("Please enter all Snowflake credentials")
elif storage_option == "PostgreSQL":
st.subheader("`Enter PostgreSQL Credentials`πŸ‘‡")
st.error("Localhost only")
# Get user input for PostgreSQL credentials
with st.form("my_form_db"):
col1, col2 = st.columns(2, gap="small")
with col1:
user = st.text_input("Username:", value="postgres")
with col2:
password = st.text_input("Password:", type="password")
with col1:
host = st.selectbox("Host:", ["localhost", "other"])
if host == "other":
host = st.text_input("Enter host:")
with col2:
port = st.text_input("Port:", value="5432")
with col1:
database = st.text_input("Database:", value="snowvation")
with col2:
table = st.text_input("Table:")
st.write("")
submitted = st.form_submit_button("Load to PostgreSQL")
# Load the data to PostgreSQL
# if st.button("Load data to PostgreSQL"):
if submitted:
if user and password and host and port and database and table:
conn = connect_to_postgres(
username=user,
password=password,
host=host,
port=port,
database=database,
)
if conn:
load_data_to_postgres(df, conn, table)
else:
st.warning("Please enter all PostgreSQL credentials and table name")
# Reset form fields when storage_option changes
reset_form_fields()