File size: 8,049 Bytes
87b3a05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import numpy as np
import gradio as gr
import ast
import requests
from theme_dropdown import create_theme_dropdown # noqa: F401
dropdown, js = create_theme_dropdown()
models = [
{"name": "Stable Diffusion 2", "url": "stabilityai/stable-diffusion-2-1"},
{"name": "stability AI", "url": "stabilityai/stable-diffusion-2-1-base"},
{"name": "Compressed-S-D", "url": "nota-ai/bk-sdm-small"},
{"name": "Future Diffusion", "url": "nitrosocke/Future-Diffusion"},
{"name": "JWST Deep Space Diffusion", "url": "dallinmackay/JWST-Deep-Space-diffusion"},
{"name": "Robo Diffusion 3 Base", "url": "nousr/robo-diffusion-2-base"},
{"name": "Robo Diffusion", "url": "nousr/robo-diffusion"},
{"name": "Tron Legacy Diffusion", "url": "dallinmackay/Tron-Legacy-diffusion"},
]
text_gen = gr.Interface.load("spaces/daspartho/prompt-extend")
current_model = models[0]
models2 = []
for model in models:
model_url = f"models/{model['url']}"
loaded_model = gr.Interface.load(model_url, live=True, preprocess=True)
models2.append(loaded_model)
def text_it(inputs, text_gen=text_gen):
return text_gen(inputs)
def flip_text(x):
return x[::-1]
def send_it(inputs, model_choice):
proc = models2[model_choice]
return proc(inputs)
def flip_image(x):
return np.fliplr(x)
def set_model(current_model_index):
global current_model
current_model = models[current_model_index]
return gr.update(value=f"{current_model['name']}")
with gr.Blocks(theme='pikto/theme@>=0.0.1,<0.0.3') as pan:
gr.Markdown("AI CONTENT TOOLS.")
with gr.Tab("T-to-I"):
##model = ("stabilityai/stable-diffusion-2-1")
model_name1 = gr.Dropdown(
label="Choose Model",
choices=[m["name"] for m in models],
type="index",
value=current_model["name"],
interactive=True,
)
input_text = gr.Textbox(label="Prompt idea",)
## run = gr.Button("Generate Images")
with gr.Row():
see_prompts = gr.Button("Generate Prompts")
run = gr.Button("Generate Images", variant="primary")
with gr.Row():
magic1 = gr.Textbox(label="Generated Prompt", lines=2)
output1 = gr.Image(label="")
with gr.Row():
magic2 = gr.Textbox(label="Generated Prompt", lines=2)
output2 = gr.Image(label="")
run.click(send_it, inputs=[magic1, model_name1], outputs=[output1])
run.click(send_it, inputs=[magic2, model_name1], outputs=[output2])
see_prompts.click(text_it, inputs=[input_text], outputs=[magic1])
see_prompts.click(text_it, inputs=[input_text], outputs=[magic2])
model_name1.change(set_model, inputs=model_name1, outputs=[output1, output2,])
with gr.Tab("Flip Image"):
#Using Gradio Demos as API - This is Hot!
API_URL_INITIAL = "https://ysharma-playground-ai-exploration.hf.space/run/initial_dataframe"
API_URL_NEXT10 = "https://ysharma-playground-ai-exploration.hf.space/run/next_10_rows"
#define inference function
#First: Get initial images for the grid display
def get_initial_images():
response = requests.post(API_URL_INITIAL, json={
"data": []
}).json()
#data = response["data"][0]['data'][0][0][:-1]
response_dict = response['data'][0]
return response_dict #, [resp[0][:-1] for resp in response["data"][0]["data"]]
#Second: Process response dictionary to get imges as hyperlinked image tags
def process_response(response_dict):
return [resp[0][:-1] for resp in response_dict["data"]]
response_dict = get_initial_images()
initial = process_response(response_dict)
initial_imgs = '<div style="display: grid; grid-template-columns: repeat(3, 1fr); grid-template-rows: repeat(3, 1fr); grid-gap: 0; background-color: #fff; padding: 20px; box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2);">\n' + "\n".join(initial[:-1])
#Third: Load more images for the grid
def get_next10_images(response_dict, row_count):
row_count = int(row_count)
#print("(1)",type(response_dict))
#Convert the string to a dictionary
if isinstance(response_dict, dict) == False :
response_dict = ast.literal_eval(response_dict)
response = requests.post(API_URL_NEXT10, json={
"data": [response_dict, row_count ] #len(initial)-1
}).json()
row_count+=10
response_dict = response['data'][0]
#print("(2)",type(response))
#print("(3)",type(response['data'][0]))
next_set = [resp[0][:-1] for resp in response_dict["data"]]
next_set_images = '<div style="display: grid; grid-template-columns: repeat(3, 1fr); grid-template-rows: repeat(3, 1fr); grid-gap: 0; background-color: #fff; padding: 20px; box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2); ">\n' + "\n".join(next_set[:-1])
return response_dict, row_count, next_set_images #response['data'][0]
#get_next10_images(response_dict=response_dict, row_count=9)
#position: fixed; top: 0; left: 0; width: 100%; background-color: #fff; padding: 20px; box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2);
#Defining the Blocks layout
with gr.Blocks(css = """#img_search img {width: 100%; height: 100%; object-fit: cover;}""") as demo:
gr.HTML(value="top of page", elem_id="top",visible=False)
gr.HTML("""<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
Using Gradio Demos as API - 2 </h1><br></div>
<div><h4 style="font-weight: 500; margin-bottom: 7px; margin-top: 5px;">
Stream <a href="https://github.com/playgroundai/liked_images" target="_blank">PlaygroundAI Images</a> ina beautiful grid</h4><br>
</div>""")
with gr.Accordion(label="Details about the working:", open=False, elem_id='accordion'):
gr.HTML("""
<p style="margin-bottom: 10px; font-size: 90%"><br>
▶️Do you see the "view api" link located in the footer of this application?
By clicking on this link, a page will open which provides documentation on the REST API that developers can use to query the Interface function / Block events.<br>
▶️In this demo, I am making such an API request to the <a href="https://huggingface.co/spaces/ysharma/Playground_AI_Exploration" target="_blank">Playground_AI_Exploration</a> Space.<br>
▶️I am exposing an API endpoint of this Gradio app as well. This can easily be done by one line of code, just set the api_name parameter of the event listener.
</p></div>""")
with gr.Column(): #(elem_id = "col-container"):
b1 = gr.Button("Load More Images").style(full_width=False)
df = gr.Textbox(visible=False,elem_id='dataframe', value=response_dict)
row_count = gr.Number(visible=False, value=19 )
img_search = gr.HTML(label = 'Images from PlaygroundAI dataset', elem_id="img_search",
value=initial_imgs ) #initial[:-1] )
gr.HTML('''<center><a href="https://huggingface.co/spaces/ysharma/Stream_PlaygroundAI_Images?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a></center>
</p></div>''')
b1.click(get_next10_images, [df, row_count], [df, row_count, img_search], api_name = "load_playgroundai_images" )
with gr.Tab("Diffuser"):
with gr.Row():
text_input = gr.Textbox() ## Diffuser
image_output = gr.Image()
image_button = gr.Button("Flip")
# text_button.click(flip_text, inputs=text_input, outputs=text_output)
# image_button.click(flip_image, inputs=image_input, outputs=image_output)
pan.queue(concurrency_count=200)
pan.launch(inline=True, show_api=True, max_threads=400)
|