File size: 8,049 Bytes
87b3a05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import numpy as np
import gradio as gr
import ast
import requests

from theme_dropdown import create_theme_dropdown  # noqa: F401

dropdown, js = create_theme_dropdown()

models = [
    {"name": "Stable Diffusion 2", "url": "stabilityai/stable-diffusion-2-1"},
    {"name": "stability AI", "url": "stabilityai/stable-diffusion-2-1-base"},
    {"name": "Compressed-S-D", "url": "nota-ai/bk-sdm-small"},
    {"name": "Future Diffusion", "url": "nitrosocke/Future-Diffusion"},
    {"name": "JWST Deep Space Diffusion", "url": "dallinmackay/JWST-Deep-Space-diffusion"},
    {"name": "Robo Diffusion 3 Base", "url": "nousr/robo-diffusion-2-base"},
    {"name": "Robo Diffusion", "url": "nousr/robo-diffusion"},
    {"name": "Tron Legacy Diffusion", "url": "dallinmackay/Tron-Legacy-diffusion"},
]   

text_gen = gr.Interface.load("spaces/daspartho/prompt-extend")

current_model = models[0]

models2 = []
for model in models:
    model_url = f"models/{model['url']}"
    loaded_model = gr.Interface.load(model_url, live=True, preprocess=True)
    models2.append(loaded_model)

def text_it(inputs, text_gen=text_gen):
    return text_gen(inputs)

def flip_text(x):
    return x[::-1]

def send_it(inputs, model_choice):
    proc = models2[model_choice]
    return proc(inputs)


def flip_image(x):
    return np.fliplr(x)


def set_model(current_model_index):
    global current_model
    current_model = models[current_model_index]
    return gr.update(value=f"{current_model['name']}")


with gr.Blocks(theme='pikto/theme@>=0.0.1,<0.0.3') as pan:
    gr.Markdown("AI CONTENT TOOLS.")
                    
    with gr.Tab("T-to-I"):
        
    ##model = ("stabilityai/stable-diffusion-2-1")
         model_name1 = gr.Dropdown(
                label="Choose Model",
                choices=[m["name"] for m in models],
                type="index",
                value=current_model["name"],
                interactive=True,
         )
         input_text = gr.Textbox(label="Prompt idea",)

        ##  run = gr.Button("Generate Images")
         with gr.Row():
             see_prompts = gr.Button("Generate Prompts")
             run = gr.Button("Generate Images", variant="primary")
        
         with gr.Row():
             magic1 = gr.Textbox(label="Generated Prompt", lines=2)
             output1 = gr.Image(label="")
          
             
         with gr.Row():    
             magic2 = gr.Textbox(label="Generated Prompt", lines=2)
             output2 = gr.Image(label="")

            
         run.click(send_it, inputs=[magic1, model_name1], outputs=[output1])
         run.click(send_it, inputs=[magic2, model_name1], outputs=[output2])
         see_prompts.click(text_it, inputs=[input_text], outputs=[magic1])
         see_prompts.click(text_it, inputs=[input_text], outputs=[magic2])
        
    model_name1.change(set_model, inputs=model_name1, outputs=[output1, output2,])
        
    with gr.Tab("Flip Image"):
         #Using Gradio Demos as API - This is Hot!
         API_URL_INITIAL = "https://ysharma-playground-ai-exploration.hf.space/run/initial_dataframe"
         API_URL_NEXT10 = "https://ysharma-playground-ai-exploration.hf.space/run/next_10_rows"

#define inference function
#First: Get initial images for the grid display 
def get_initial_images():
  response = requests.post(API_URL_INITIAL, json={
            "data": []
            }).json()
  #data = response["data"][0]['data'][0][0][:-1]
  response_dict = response['data'][0]
  return response_dict  #, [resp[0][:-1] for resp in response["data"][0]["data"]]

#Second: Process response dictionary to get imges as hyperlinked image tags
def process_response(response_dict):
  return [resp[0][:-1] for resp in response_dict["data"]]

response_dict = get_initial_images()
initial = process_response(response_dict)
initial_imgs  = '<div style="display: grid; grid-template-columns: repeat(3, 1fr); grid-template-rows: repeat(3, 1fr); grid-gap: 0; background-color: #fff; padding: 20px; box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2);">\n' + "\n".join(initial[:-1])

#Third: Load more images for the grid
def get_next10_images(response_dict, row_count):
    row_count = int(row_count)
    #print("(1)",type(response_dict))
    #Convert the string to a dictionary
    if isinstance(response_dict, dict) == False :
        response_dict = ast.literal_eval(response_dict)
    response = requests.post(API_URL_NEXT10, json={
              "data": [response_dict, row_count ] #len(initial)-1
               }).json()
    row_count+=10
    response_dict = response['data'][0]
    #print("(2)",type(response))
    #print("(3)",type(response['data'][0]))
    next_set  = [resp[0][:-1] for resp in response_dict["data"]]
    next_set_images = '<div style="display: grid; grid-template-columns: repeat(3, 1fr); grid-template-rows: repeat(3, 1fr); grid-gap: 0; background-color: #fff; padding: 20px; box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2); ">\n' + "\n".join(next_set[:-1])
    return response_dict, row_count, next_set_images  #response['data'][0]

#get_next10_images(response_dict=response_dict, row_count=9)
#position: fixed; top: 0; left: 0; width: 100%; background-color: #fff; padding: 20px; box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2);

#Defining the Blocks layout
with gr.Blocks(css = """#img_search img {width: 100%; height: 100%; object-fit: cover;}""") as demo:
  gr.HTML(value="top of page", elem_id="top",visible=False)
  gr.HTML("""<div style="text-align: center; max-width: 700px; margin: 0 auto;">
        <div
        style="
            display: inline-flex;
            align-items: center;
            gap: 0.8rem;
            font-size: 1.75rem;
        "
        >
        <h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
            Using Gradio Demos as API - 2 </h1><br></div>
        <div><h4 style="font-weight: 500; margin-bottom: 7px; margin-top: 5px;">
            Stream <a href="https://github.com/playgroundai/liked_images" target="_blank">PlaygroundAI Images</a> ina beautiful grid</h4><br>
        </div>""")
  with gr.Accordion(label="Details about the working:", open=False, elem_id='accordion'):
    gr.HTML("""
        <p style="margin-bottom: 10px; font-size: 90%"><br>
        ▶️Do you see the "view api" link located in the footer of this application? 
        By clicking on this link, a page will open which provides documentation on the REST API that developers can use to query the Interface function / Block events.<br>
        ▶️In this demo, I am making such an API request to the <a href="https://huggingface.co/spaces/ysharma/Playground_AI_Exploration" target="_blank">Playground_AI_Exploration</a> Space.<br>
        ▶️I am exposing an API endpoint of this Gradio app as well. This can easily be done by one line of code, just set the api_name parameter of the event listener.
        </p></div>""")

  with gr.Column(): #(elem_id = "col-container"):
    b1 = gr.Button("Load More Images").style(full_width=False)
    df = gr.Textbox(visible=False,elem_id='dataframe', value=response_dict)
    row_count = gr.Number(visible=False, value=19 )
    img_search = gr.HTML(label = 'Images from PlaygroundAI dataset', elem_id="img_search", 
                         value=initial_imgs ) #initial[:-1] )
      
  gr.HTML('''<center><a href="https://huggingface.co/spaces/ysharma/Stream_PlaygroundAI_Images?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a></center> 
        </p></div>''')
  b1.click(get_next10_images, [df, row_count], [df, row_count, img_search], api_name = "load_playgroundai_images" ) 
            

    with gr.Tab("Diffuser"):
        with gr.Row():
            text_input = gr.Textbox()                      ##   Diffuser
            image_output = gr.Image()
        image_button = gr.Button("Flip")



   # text_button.click(flip_text, inputs=text_input, outputs=text_output)
   # image_button.click(flip_image, inputs=image_input, outputs=image_output)
pan.queue(concurrency_count=200)
pan.launch(inline=True, show_api=True, max_threads=400)