File size: 2,712 Bytes
8a35bc0
 
 
 
 
 
 
 
 
 
 
 
 
 
7c4332a
 
 
 
 
 
264e02e
7c4332a
 
 
 
 
264e02e
 
7c4332a
264e02e
7c4332a
 
 
 
 
 
 
264e02e
7c4332a
 
 
264e02e
7c4332a
 
 
 
 
 
264e02e
7c4332a
 
 
 
 
264e02e
7c4332a
 
 
 
 
 
 
 
 
 
264e02e
 
 
 
7c4332a
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# -------------------------------------------------------------------
# Pimcore
#
# This source file is available under two different licenses:
#  - GNU General Public License version 3 (GPLv3)
#  - Pimcore Commercial License (PCL)
# Full copyright and license information is available in
# LICENSE.md which is distributed with this source code.
#
#  @copyright  Copyright (c) Pimcore GmbH (http://www.pimcore.org)
#  @license    http://www.pimcore.org/license     GPLv3 and PCL
# -------------------------------------------------------------------


from pydantic import BaseModel
from typing import Annotated
from fastapi import Form


class ImageClassificationTrainingParameters(BaseModel):
    """ Provides specific training parameters for the image classification fine tuning."""
    epochs: int
    learning_rate: float


def map_image_classification_training_parameters(
    epocs: Annotated[int, Form(description="Epochs executed during training.")] = 3,
    learning_rate: Annotated[float, Form(description="Learning rate for training.")] = 5e-5
) -> ImageClassificationTrainingParameters:
    """ Maps the parameters to the ImageClassificationTrainingParameters class. """
    return ImageClassificationTrainingParameters(
        epochs=epocs,
        learning_rate=learning_rate
    )


class ImageClassificationParameters: 
    """ Provides all parameters for the image classification fine tuning. """

    __training_files_path: str
    __training_zip_file_path: str
    __project_name: str
    __source_model_name: str
    __training_parameters: ImageClassificationTrainingParameters

    def __init__(self, 
                 training_files_path: str, 
                 training_zip_file_path: str, 
                 project_name: str, 
                 source_model_name: str,
                 training_parameters: ImageClassificationTrainingParameters
                 ):
        self.__training_files_path = training_files_path
        self.__training_zip_file_path = training_zip_file_path
        self.__project_name = project_name
        self.__source_model_name = source_model_name
        self.__training_parameters = training_parameters

    def get_training_files_path(self) -> str:
        return self.__training_files_path

    def get_training_zip_file(self) -> str:
        return self.__training_zip_file_path

    def get_result_model_name(self) -> str:
        return self.__project_name

    def get_project_name(self) -> str:
        return self.__project_name

    def get_source_model_name(self) -> str:
        return self.__source_model_name
    
    def get_training_parameters(self) -> ImageClassificationTrainingParameters:
        return self.__training_parameters