Spaces:
Sleeping
Sleeping
File size: 9,269 Bytes
8a35bc0 7c4332a 264e02e 7c4332a 264e02e 7c4332a 264e02e 7c4332a 9a7baaa 7c4332a 264e02e 7c4332a 264e02e 7c4332a 264e02e 7c4332a 264e02e ade1b4d 264e02e 7c4332a 264e02e 7c4332a 264e02e 7c4332a 264e02e 7c4332a 264e02e 7c4332a 264e02e 7c4332a 264e02e 7c4332a 264e02e 7c4332a 264e02e 7c4332a 264e02e 7c4332a 264e02e 7c4332a 264e02e 7c4332a 264e02e 7c4332a 264e02e 7c4332a 264e02e 7c4332a 264e02e 7c4332a 264e02e 7c4332a 264e02e 7c4332a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
# -------------------------------------------------------------------
# Pimcore
#
# This source file is available under two different licenses:
# - GNU General Public License version 3 (GPLv3)
# - Pimcore Commercial License (PCL)
# Full copyright and license information is available in
# LICENSE.md which is distributed with this source code.
#
# @copyright Copyright (c) Pimcore GmbH (http://www.pimcore.org)
# @license http://www.pimcore.org/license GPLv3 and PCL
# -------------------------------------------------------------------
import os
import torch
from .training_status import Status
from .environment_variable_checker import EnvironmentVariableChecker
from .training_manager import TrainingManager
from .image_classification.image_classification_trainer import ImageClassificationTrainer
from .image_classification.image_classification_parameters import ImageClassificationParameters, map_image_classification_training_parameters, ImageClassificationTrainingParameters
from .text_classification.text_classification_trainer import TextClassificationTrainer
from .text_classification.text_classification_parameters import TextClassificationParameters, map_text_classification_training_parameters, TextClassificationTrainingParameters
from fastapi import FastAPI, Depends, HTTPException, UploadFile, Form, File, status
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from pydantic import BaseModel
from typing import Annotated
import logging
import os
from pathlib import Path
import tempfile
app = FastAPI(
title="Pimcore Fine-Tuning Service",
description="This service allows you to fine-tune image and text classification models and upload them to hugging face hub.",
version="1.0.0"
)
environmentVariableChecker = EnvironmentVariableChecker()
environmentVariableChecker.validate_environment_variables()
logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s')
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
classification_trainer: TrainingManager = TrainingManager()
class ResponseModel(BaseModel):
""" Default pesponse model for endpoints. """
message: str
success: bool = True
# ===========================================
# Security Check
# ===========================================
security = HTTPBearer()
def verify_token(credentials: HTTPAuthorizationCredentials = Depends(security)):
"""Verify the token provided by the user."""
token = environmentVariableChecker.get_authentication_token()
if credentials.credentials != token:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid token",
headers={"WWW-Authenticate": "Bearer"},
)
return {"token": credentials.credentials}
# ===========================================
# Training Status Endpoints
# ===========================================
@app.get("/get_training_status")
async def get_task_status(token_data: dict = Depends(verify_token)):
""" Get the status of the currently running training (if any). """
status = classification_trainer.get_task_status()
return {
"project": status.get_project_name(),
"progress": status.get_progress(),
"task": status.get_task(),
"status": status.get_status().value
}
@app.put("/stop_training")
async def stop_task(token_data: dict = Depends(verify_token)):
""" Stop the currently running training (if any). """
try:
status = classification_trainer.get_task_status()
classification_trainer.stop_task()
return ResponseModel(message=f"Training stopped for `{ status.get_project_name() }`")
except Exception as e:
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
@app.get("/gpu_check")
async def gpu_check():
""" Check if a GPU is available """
gpu = 'GPU not available'
if torch.cuda.is_available():
gpu = 'GPU is available'
print("GPU is available")
else:
print("GPU is not available")
return {'success': True, 'gpu': gpu}
# ===========================================
# Fine-Tuning Image Classification
# ===========================================
@app.post(
"/training/image_classification",
response_model=ResponseModel
)
async def image_classification(
training_params: Annotated[ImageClassificationTrainingParameters, Depends(map_image_classification_training_parameters)],
training_data_zip: Annotated[UploadFile, File(description="The ZIP file containing the training data, with a folder per class which contains images belonging to that class.")],
token_data: dict = Depends(verify_token),
project_name: str = Form(description="The name of the project. Will also be used as name of resulting model that will be created after fine tuning and as the name of the repository at huggingface."),
source_model_name: str = Form('google/vit-base-patch16-224-in21k', description="The source model to be used as basis for fine tuning."),
):
"""
Start fine tuning an image classification model with the provided data.
"""
# check if training is running, if so then exit
status = classification_trainer.get_task_status()
if status.get_status() == Status.IN_PROGRESS or status.get_status() == Status.CANCELLING:
raise HTTPException(status_code=405, detail="Training is already in progress.")
# Ensure the uploaded file is a ZIP file
if not training_data_zip.filename.endswith(".zip"):
raise HTTPException(status_code=422, detail="Uploaded file is not a zip file.")
try:
# Create a temporary directory to extract the contents
tmp_path = os.path.join(tempfile.gettempdir(), 'training_data')
path = Path(tmp_path)
path.mkdir(parents=True, exist_ok=True)
contents = await training_data_zip.read()
zip_path = os.path.join(tmp_path, 'image_classification_data.zip')
with open(zip_path, 'wb') as temp_file:
temp_file.write(contents)
# prepare parameters
parameters = ImageClassificationParameters(
training_files_path=tmp_path,
training_zip_file_path=zip_path,
project_name=project_name,
source_model_name=source_model_name,
training_parameters=training_params
)
# start training
await classification_trainer.start_training(ImageClassificationTrainer(), parameters)
return ResponseModel(message="Training started.")
except Exception as e:
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
# ===========================================
# Fine-Tuning Text Classification
# ===========================================
@app.post(
"/training/text_classification",
response_model=ResponseModel
)
async def text_classificaiton(
training_params: Annotated[TextClassificationTrainingParameters, Depends(map_text_classification_training_parameters)],
training_data_csv: Annotated[UploadFile, File(description="The CSV file containing the training data, necessary columns `value` (text data) and `target` (classification).")],
token_data: dict = Depends(verify_token),
project_name: str = Form(description="The name of the project. Will also be used as name of resulting model that will be created after fine tuning and as the name of the repository at huggingface."),
training_csv_limiter: str = Form(';', description="The delimiter used in the CSV file."),
source_model_name: str = Form('distilbert/distilbert-base-uncased'),
):
"""Start fine tuning an text classification model with the provided data."""
# check if training is running, if so then exit
status = classification_trainer.get_task_status()
if status.get_status() == Status.IN_PROGRESS or status.get_status() == Status.CANCELLING:
raise HTTPException(status_code=405, detail="Training is already in progress")
# Ensure the uploaded file is a CSV file
if not training_data_csv.filename.endswith(".csv"):
raise HTTPException(status_code=422, detail="Uploaded file is not a csv file.")
try:
# Create a temporary directory to extract the contents
tmp_path = os.path.join(tempfile.gettempdir(), 'training_data')
path = Path(tmp_path)
path.mkdir(parents=True, exist_ok=True)
contents = await training_data_csv.read()
csv_path = os.path.join(tmp_path, 'data.csv')
with open(csv_path, 'wb') as temp_file:
temp_file.write(contents)
# prepare parameters
parameters = TextClassificationParameters(
training_csv_file_path=csv_path,
training_csv_limiter=training_csv_limiter,
project_name=project_name,
source_model_name=source_model_name,
training_parameters=training_params
)
# start training
await classification_trainer.start_training(TextClassificationTrainer(), parameters)
return ResponseModel(message="Training started.")
except Exception as e:
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|