Spaces:
Sleeping
Sleeping
File size: 2,735 Bytes
8a35bc0 264e02e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
# -------------------------------------------------------------------
# Pimcore
#
# This source file is available under two different licenses:
# - GNU General Public License version 3 (GPLv3)
# - Pimcore Commercial License (PCL)
# Full copyright and license information is available in
# LICENSE.md which is distributed with this source code.
#
# @copyright Copyright (c) Pimcore GmbH (http://www.pimcore.org)
# @license http://www.pimcore.org/license GPLv3 and PCL
# -------------------------------------------------------------------
from pydantic import BaseModel
from typing import Annotated
from fastapi import Form
class TextClassificationTrainingParameters(BaseModel):
""" Provides specific training parameters for the text classification fine tuning."""
epochs: int
learning_rate: float
def map_text_classification_training_parameters(
epocs: Annotated[int, Form(description="Epochs executed during training.")] = 3,
learning_rate: Annotated[float, Form(description="Learning rate for training.")] = 5e-5
) -> TextClassificationTrainingParameters:
""" Maps the parameters to the TextClassificationTrainingParameters class. """
return TextClassificationTrainingParameters(
epochs=epocs,
learning_rate=learning_rate
)
class TextClassificationParameters:
""" Provides all parameters for the text classification fine tuning. """
__training_csv_file_path: str
__training_csv_limiter: str
__project_name: str
__source_model_name: str
__training_parameters: TextClassificationTrainingParameters
def __init__(self,
training_csv_file_path: str,
project_name: str,
source_model_name: str,
training_parameters: TextClassificationTrainingParameters,
training_csv_limiter: str = ';'
):
self.__training_csv_file_path = training_csv_file_path
self.__project_name = project_name
self.__source_model_name = source_model_name
self.__training_parameters = training_parameters
self.__training_csv_limiter = training_csv_limiter
def get_training_csv_file_path(self) -> str:
return self.__training_csv_file_path
def get_training_csv_limiter(self) -> str:
return self.__training_csv_limiter
def get_project_name(self) -> str:
return self.__project_name
def get_result_model_name(self) -> str:
return self.__project_name
def get_source_model_name(self) -> str:
return self.__source_model_name
def get_training_parameters(self) -> TextClassificationTrainingParameters:
return self.__training_parameters
|