import logging from transformers import TrainerCallback, TrainingArguments, TrainerState, TrainerControl from .training_status import TrainingStatus logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) class ProgressCallback(TrainerCallback): __trainingStatus: TrainingStatus = None def __init__(self, trainingStatus: TrainingStatus): self.__trainingStatus = trainingStatus def on_step_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs): logger.info(f"Completed step {state.global_step} of {state.max_steps}") if self.__trainingStatus.is_training_aborted(): control.should_training_stop = True logger.info("Training aborted") return startPercentage = 21 endPercentage = 89 scope = endPercentage - startPercentage progress = startPercentage + (state.global_step / state.max_steps) * scope self.__trainingStatus.update_status(progress, f"Training model, completed step {state.global_step} of {state.max_steps}")