fashxp commited on
Commit
5c263d5
·
1 Parent(s): 43352b0

initial commit

Browse files
Files changed (6) hide show
  1. .gitignore +7 -0
  2. Dockerfile +17 -0
  3. README.md +18 -5
  4. docker-compose.yaml +15 -0
  5. requirements.txt +8 -0
  6. src/main.py +303 -0
.gitignore ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ # local config
2
+ docker-compose.override.yaml
3
+
4
+ # PhpStorm / IDEA
5
+ .idea
6
+ # NetBeans
7
+ nbproject
Dockerfile ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.9
2
+
3
+ RUN useradd -m -u 1000 user
4
+ USER user
5
+
6
+ ENV HOME=/home/user \
7
+ PATH=/home/user/.local/bin:$PATH
8
+
9
+ WORKDIR $HOME/app
10
+
11
+ COPY --chown=user requirements.txt requirements.txt
12
+
13
+ RUN pip install --upgrade -r requirements.txt
14
+
15
+ COPY --chown=user . .
16
+
17
+ CMD ["uvicorn", "src.main:app", "--host", "0.0.0.0", "--port", "7860"]
README.md CHANGED
@@ -1,12 +1,25 @@
1
  ---
2
  title: Local Inference Service
3
- emoji: 🌖
4
- colorFrom: red
5
- colorTo: pink
6
  sdk: docker
7
  pinned: false
8
  license: other
9
- short_description: This services allows HF inference provider compatible infere
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  title: Local Inference Service
3
+ emoji: 🦀
4
+ colorFrom: green
5
+ colorTo: yellow
6
  sdk: docker
7
  pinned: false
8
  license: other
 
9
  ---
10
 
11
+ # Pimcore Local Inference Service
12
+
13
+ This services allows HF inference provider compatible inference to models which are not available at HF inference providers.
14
+
15
+ ## Supported Tasks / Models
16
+
17
+ - Zero-Shot Image Classification
18
+ - Translation
19
+ - Image To Text
20
+
21
+
22
+
23
+
24
+
25
+
docker-compose.yaml ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ services:
2
+ server:
3
+ build:
4
+ context: .
5
+ ports:
6
+ - 7860:7860
7
+ develop:
8
+ watch:
9
+ - action: rebuild
10
+ path: .
11
+ volumes:
12
+ - python-cache:/home/user/.cache
13
+
14
+ volumes:
15
+ python-cache:
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ fastapi==0.111.*
2
+ requests==2.*
3
+ uvicorn[standard]==0.30.*
4
+ transformers
5
+ sentencepiece
6
+ sacremoses
7
+ torch
8
+ # Optional dependencies for specific features
src/main.py ADDED
@@ -0,0 +1,303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -------------------------------------------------------------------
2
+ # This source file is available under the terms of the
3
+ # Pimcore Open Core License (POCL)
4
+ # Full copyright and license information is available in
5
+ # LICENSE.md which is distributed with this source code.
6
+ #
7
+ # @copyright Copyright (c) Pimcore GmbH (https://www.pimcore.com)
8
+ # @license Pimcore Open Core License (POCL)
9
+ # -------------------------------------------------------------------
10
+
11
+ import os
12
+ import torch
13
+
14
+ #from .training_status import Status
15
+ #from .environment_variable_checker import EnvironmentVariableChecker
16
+
17
+ #from .training_manager import TrainingManager
18
+ #from .image_classification.image_classification_trainer import ImageClassificationTrainer
19
+ #from .image_classification.image_classification_parameters import ImageClassificationParameters, map_image_classification_training_parameters, ImageClassificationTrainingParameters
20
+ #from .text_classification.text_classification_trainer import TextClassificationTrainer
21
+ #from .text_classification.text_classification_parameters import TextClassificationParameters, map_text_classification_training_parameters, TextClassificationTrainingParameters
22
+
23
+
24
+ from fastapi import FastAPI, Depends, HTTPException, UploadFile, Form, File, status
25
+ from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
26
+ from pydantic import BaseModel
27
+ from typing import Annotated
28
+
29
+
30
+ import logging
31
+ from pathlib import Path
32
+ import tempfile
33
+ import sys
34
+
35
+
36
+ from transformers import pipeline
37
+
38
+ app = FastAPI(
39
+ title="Pimcore Local Inference Service",
40
+ description="This services allows HF inference provider compatible inference to models which are not available at HF inference providers.",
41
+ version="1.0.0"
42
+ )
43
+
44
+ #environmentVariableChecker = EnvironmentVariableChecker()
45
+ #environmentVariableChecker.validate_environment_variables()
46
+
47
+ logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s')
48
+ logger = logging.getLogger(__name__)
49
+ logger.setLevel(logging.DEBUG)
50
+
51
+
52
+ class StreamToLogger(object):
53
+ def __init__(self, logger, log_level):
54
+ self.logger = logger
55
+ self.log_level = log_level
56
+ self.linebuf = ''
57
+
58
+ def write(self, buf):
59
+ for line in buf.rstrip().splitlines():
60
+ self.logger.log(self.log_level, line.rstrip())
61
+
62
+ def flush(self):
63
+ pass
64
+
65
+ sys.stdout = StreamToLogger(logger, logging.INFO)
66
+ sys.stderr = StreamToLogger(logger, logging.ERROR)
67
+
68
+ #classification_trainer: TrainingManager = TrainingManager()
69
+
70
+
71
+ class ResponseModel(BaseModel):
72
+ """ Default response model for endpoints. """
73
+ message: str
74
+ success: bool = True
75
+
76
+
77
+ # ===========================================
78
+ # Security Check
79
+ # ===========================================
80
+
81
+ # security = HTTPBearer()
82
+ # def verify_token(credentials: HTTPAuthorizationCredentials = Depends(security)):
83
+ # """Verify the token provided by the user."""
84
+
85
+ # token = environmentVariableChecker.get_authentication_token()
86
+
87
+ # if credentials.credentials != token:
88
+ # raise HTTPException(
89
+ # status_code=status.HTTP_401_UNAUTHORIZED,
90
+ # detail="Invalid token",
91
+ # headers={"WWW-Authenticate": "Bearer"},
92
+ # )
93
+ # return {"token": credentials.credentials}
94
+
95
+
96
+ # ===========================================
97
+ # Training Status Endpoints
98
+ # ===========================================
99
+
100
+ # @app.get("/get_training_status")
101
+ # async def get_task_status(token_data: dict = Depends(verify_token)):
102
+ # """ Get the status of the currently running training (if any). """
103
+ # status = classification_trainer.get_task_status()
104
+ # return {
105
+ # "project": status.get_project_name(),
106
+ # "progress": status.get_progress(),
107
+ # "task": status.get_task(),
108
+ # "status": status.get_status().value
109
+ # }
110
+
111
+ # @app.put("/stop_training")
112
+ # async def stop_task(token_data: dict = Depends(verify_token)):
113
+ # """ Stop the currently running training (if any). """
114
+ # try:
115
+ # status = classification_trainer.get_task_status()
116
+ # classification_trainer.stop_task()
117
+ # return ResponseModel(message=f"Training stopped for `{ status.get_project_name() }`")
118
+ # except Exception as e:
119
+ # raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
120
+
121
+
122
+ @app.get("/gpu_check")
123
+ async def gpu_check():
124
+ """ Check if a GPU is available """
125
+
126
+ gpu = 'GPU not available'
127
+ if torch.cuda.is_available():
128
+ gpu = 'GPU is available'
129
+ print("GPU is available")
130
+ else:
131
+ print("GPU is not available")
132
+
133
+ return {'success': True, 'gpu': gpu}
134
+
135
+
136
+ from fastapi import Body
137
+ from typing import Optional
138
+
139
+ class TranslationRequest(BaseModel):
140
+ inputs: str
141
+ parameters: Optional[dict] = None
142
+
143
+ @app.post(
144
+ "/translation/{model_name:path}/",
145
+ )
146
+ async def translation(
147
+ model_name: str,
148
+ body: TranslationRequest = Body(
149
+ ...,
150
+ example={
151
+ "inputs": "I am a car",
152
+ "parameters": {
153
+ "repetition_penalty": 1.6,
154
+ }
155
+ }
156
+ )
157
+ ):
158
+ """
159
+ Execute translation tasks.
160
+
161
+ Args:
162
+ model_name (str): The HuggingFace model name to use for translation.
163
+ body (TranslationRequest): The request payload containing translation parameters.
164
+
165
+ Returns:
166
+ list: The translation result(s) as returned by the pipeline.
167
+ """
168
+
169
+ try:
170
+ pipe = pipeline("translation", model=model_name)
171
+ except Exception as e:
172
+ logger.error(f"Failed to load model '{model_name}': {str(e)}")
173
+ raise HTTPException(
174
+ status_code=404,
175
+ detail=f"Model '{model_name}' could not be loaded: {str(e)}"
176
+ )
177
+
178
+ try:
179
+ result = pipe(body.inputs, **(body.parameters or {}))
180
+ except Exception as e:
181
+ logger.error(f"Inference failed for model '{model_name}': {str(e)}")
182
+ raise HTTPException(
183
+ status_code=500,
184
+ detail=f"Inference failed: {str(e)}"
185
+ )
186
+
187
+ return result
188
+
189
+
190
+ # ===========================================
191
+ # Fine-Tuning Image Classification
192
+ # ===========================================
193
+
194
+ # @app.post(
195
+ # "/training/image_classification",
196
+ # response_model=ResponseModel
197
+ # )
198
+ # async def image_classification(
199
+ # training_params: Annotated[ImageClassificationTrainingParameters, Depends(map_image_classification_training_parameters)],
200
+ # training_data_zip: Annotated[UploadFile, File(description="The ZIP file containing the training data, with a folder per class which contains images belonging to that class.")],
201
+ # token_data: dict = Depends(verify_token),
202
+ # project_name: str = Form(description="The name of the project. Will also be used as name of resulting model that will be created after fine tuning and as the name of the repository at huggingface."),
203
+ # source_model_name: str = Form('google/vit-base-patch16-224-in21k', description="The source model to be used as basis for fine tuning."),
204
+ # ):
205
+ # """
206
+ # Start fine tuning an image classification model with the provided data.
207
+ # """
208
+
209
+ # # check if training is running, if so then exit
210
+ # status = classification_trainer.get_task_status()
211
+ # if status.get_status() == Status.IN_PROGRESS or status.get_status() == Status.CANCELLING:
212
+ # raise HTTPException(status_code=405, detail="Training is already in progress.")
213
+
214
+ # # Ensure the uploaded file is a ZIP file
215
+ # if not training_data_zip.filename.endswith(".zip"):
216
+ # raise HTTPException(status_code=422, detail="Uploaded file is not a zip file.")
217
+
218
+ # try:
219
+ # # Create a temporary directory to extract the contents
220
+ # tmp_path = os.path.join(tempfile.gettempdir(), 'training_data')
221
+ # path = Path(tmp_path)
222
+ # path.mkdir(parents=True, exist_ok=True)
223
+
224
+ # contents = await training_data_zip.read()
225
+ # zip_path = os.path.join(tmp_path, 'image_classification_data.zip')
226
+ # with open(zip_path, 'wb') as temp_file:
227
+ # temp_file.write(contents)
228
+
229
+ # # prepare parameters
230
+ # parameters = ImageClassificationParameters(
231
+ # training_files_path=tmp_path,
232
+ # training_zip_file_path=zip_path,
233
+ # project_name=project_name,
234
+ # source_model_name=source_model_name,
235
+ # training_parameters=training_params
236
+ # )
237
+
238
+ # # start training
239
+ # await classification_trainer.start_training(ImageClassificationTrainer(), parameters)
240
+
241
+ # return ResponseModel(message="Training started.")
242
+
243
+ # except Exception as e:
244
+ # raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
245
+
246
+
247
+
248
+
249
+ # ===========================================
250
+ # Fine-Tuning Text Classification
251
+ # ===========================================
252
+
253
+ # @app.post(
254
+ # "/training/text_classification",
255
+ # response_model=ResponseModel
256
+ # )
257
+ # async def text_classificaiton(
258
+ # training_params: Annotated[TextClassificationTrainingParameters, Depends(map_text_classification_training_parameters)],
259
+ # training_data_csv: Annotated[UploadFile, File(description="The CSV file containing the training data, necessary columns `value` (text data) and `target` (classification).")],
260
+ # token_data: dict = Depends(verify_token),
261
+ # project_name: str = Form(description="The name of the project. Will also be used as name of resulting model that will be created after fine tuning and as the name of the repository at huggingface."),
262
+ # training_csv_limiter: str = Form(';', description="The delimiter used in the CSV file."),
263
+ # source_model_name: str = Form('distilbert/distilbert-base-uncased'),
264
+ # ):
265
+ # """Start fine tuning an text classification model with the provided data."""
266
+
267
+ # # check if training is running, if so then exit
268
+ # status = classification_trainer.get_task_status()
269
+ # if status.get_status() == Status.IN_PROGRESS or status.get_status() == Status.CANCELLING:
270
+ # raise HTTPException(status_code=405, detail="Training is already in progress")
271
+
272
+ # # Ensure the uploaded file is a CSV file
273
+ # if not training_data_csv.filename.endswith(".csv"):
274
+ # raise HTTPException(status_code=422, detail="Uploaded file is not a csv file.")
275
+
276
+ # try:
277
+ # # Create a temporary directory to extract the contents
278
+ # tmp_path = os.path.join(tempfile.gettempdir(), 'training_data')
279
+ # path = Path(tmp_path)
280
+ # path.mkdir(parents=True, exist_ok=True)
281
+
282
+ # contents = await training_data_csv.read()
283
+ # csv_path = os.path.join(tmp_path, 'data.csv')
284
+ # with open(csv_path, 'wb') as temp_file:
285
+ # temp_file.write(contents)
286
+
287
+ # # prepare parameters
288
+ # parameters = TextClassificationParameters(
289
+ # training_csv_file_path=csv_path,
290
+ # training_csv_limiter=training_csv_limiter,
291
+ # project_name=project_name,
292
+ # source_model_name=source_model_name,
293
+ # training_parameters=training_params
294
+ # )
295
+
296
+ # # start training
297
+ # await classification_trainer.start_training(TextClassificationTrainer(), parameters)
298
+
299
+ # return ResponseModel(message="Training started.")
300
+
301
+ # except Exception as e:
302
+ # raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
303
+