# ------------------------------------------------------------------- # This source file is available under the terms of the # Pimcore Open Core License (POCL) # Full copyright and license information is available in # LICENSE.md which is distributed with this source code. # # @copyright Copyright (c) Pimcore GmbH (https://www.pimcore.com) # @license Pimcore Open Core License (POCL) # ------------------------------------------------------------------- import os import torch #from .training_status import Status #from .environment_variable_checker import EnvironmentVariableChecker #from .training_manager import TrainingManager #from .image_classification.image_classification_trainer import ImageClassificationTrainer #from .image_classification.image_classification_parameters import ImageClassificationParameters, map_image_classification_training_parameters, ImageClassificationTrainingParameters #from .text_classification.text_classification_trainer import TextClassificationTrainer #from .text_classification.text_classification_parameters import TextClassificationParameters, map_text_classification_training_parameters, TextClassificationTrainingParameters from fastapi import FastAPI, Depends, HTTPException, UploadFile, Form, File, status from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials from pydantic import BaseModel from typing import Annotated import logging from pathlib import Path import tempfile import sys from transformers import pipeline app = FastAPI( title="Pimcore Local Inference Service", description="This services allows HF inference provider compatible inference to models which are not available at HF inference providers.", version="1.0.0" ) #environmentVariableChecker = EnvironmentVariableChecker() #environmentVariableChecker.validate_environment_variables() logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s') logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) class StreamToLogger(object): def __init__(self, logger, log_level): self.logger = logger self.log_level = log_level self.linebuf = '' def write(self, buf): for line in buf.rstrip().splitlines(): self.logger.log(self.log_level, line.rstrip()) def flush(self): pass sys.stdout = StreamToLogger(logger, logging.INFO) sys.stderr = StreamToLogger(logger, logging.ERROR) #classification_trainer: TrainingManager = TrainingManager() class ResponseModel(BaseModel): """ Default response model for endpoints. """ message: str success: bool = True # =========================================== # Security Check # =========================================== # security = HTTPBearer() # def verify_token(credentials: HTTPAuthorizationCredentials = Depends(security)): # """Verify the token provided by the user.""" # token = environmentVariableChecker.get_authentication_token() # if credentials.credentials != token: # raise HTTPException( # status_code=status.HTTP_401_UNAUTHORIZED, # detail="Invalid token", # headers={"WWW-Authenticate": "Bearer"}, # ) # return {"token": credentials.credentials} # =========================================== # Training Status Endpoints # =========================================== # @app.get("/get_training_status") # async def get_task_status(token_data: dict = Depends(verify_token)): # """ Get the status of the currently running training (if any). """ # status = classification_trainer.get_task_status() # return { # "project": status.get_project_name(), # "progress": status.get_progress(), # "task": status.get_task(), # "status": status.get_status().value # } # @app.put("/stop_training") # async def stop_task(token_data: dict = Depends(verify_token)): # """ Stop the currently running training (if any). """ # try: # status = classification_trainer.get_task_status() # classification_trainer.stop_task() # return ResponseModel(message=f"Training stopped for `{ status.get_project_name() }`") # except Exception as e: # raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}") @app.get("/gpu_check") async def gpu_check(): """ Check if a GPU is available """ gpu = 'GPU not available' if torch.cuda.is_available(): gpu = 'GPU is available' print("GPU is available") else: print("GPU is not available") return {'success': True, 'gpu': gpu} from fastapi import Body from typing import Optional class TranslationRequest(BaseModel): inputs: str parameters: Optional[dict] = None @app.post( "/translation/{model_name:path}/", ) async def translation( model_name: str, body: TranslationRequest = Body( ..., example={ "inputs": "I am a car", "parameters": { "repetition_penalty": 1.6, } } ) ): """ Execute translation tasks. Args: model_name (str): The HuggingFace model name to use for translation. body (TranslationRequest): The request payload containing translation parameters. Returns: list: The translation result(s) as returned by the pipeline. """ try: pipe = pipeline("translation", model=model_name) except Exception as e: logger.error(f"Failed to load model '{model_name}': {str(e)}") raise HTTPException( status_code=404, detail=f"Model '{model_name}' could not be loaded: {str(e)}" ) try: result = pipe(body.inputs, **(body.parameters or {})) except Exception as e: logger.error(f"Inference failed for model '{model_name}': {str(e)}") raise HTTPException( status_code=500, detail=f"Inference failed: {str(e)}" ) return result # =========================================== # Fine-Tuning Image Classification # =========================================== # @app.post( # "/training/image_classification", # response_model=ResponseModel # ) # async def image_classification( # training_params: Annotated[ImageClassificationTrainingParameters, Depends(map_image_classification_training_parameters)], # training_data_zip: Annotated[UploadFile, File(description="The ZIP file containing the training data, with a folder per class which contains images belonging to that class.")], # token_data: dict = Depends(verify_token), # project_name: str = Form(description="The name of the project. Will also be used as name of resulting model that will be created after fine tuning and as the name of the repository at huggingface."), # source_model_name: str = Form('google/vit-base-patch16-224-in21k', description="The source model to be used as basis for fine tuning."), # ): # """ # Start fine tuning an image classification model with the provided data. # """ # # check if training is running, if so then exit # status = classification_trainer.get_task_status() # if status.get_status() == Status.IN_PROGRESS or status.get_status() == Status.CANCELLING: # raise HTTPException(status_code=405, detail="Training is already in progress.") # # Ensure the uploaded file is a ZIP file # if not training_data_zip.filename.endswith(".zip"): # raise HTTPException(status_code=422, detail="Uploaded file is not a zip file.") # try: # # Create a temporary directory to extract the contents # tmp_path = os.path.join(tempfile.gettempdir(), 'training_data') # path = Path(tmp_path) # path.mkdir(parents=True, exist_ok=True) # contents = await training_data_zip.read() # zip_path = os.path.join(tmp_path, 'image_classification_data.zip') # with open(zip_path, 'wb') as temp_file: # temp_file.write(contents) # # prepare parameters # parameters = ImageClassificationParameters( # training_files_path=tmp_path, # training_zip_file_path=zip_path, # project_name=project_name, # source_model_name=source_model_name, # training_parameters=training_params # ) # # start training # await classification_trainer.start_training(ImageClassificationTrainer(), parameters) # return ResponseModel(message="Training started.") # except Exception as e: # raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}") # =========================================== # Fine-Tuning Text Classification # =========================================== # @app.post( # "/training/text_classification", # response_model=ResponseModel # ) # async def text_classificaiton( # training_params: Annotated[TextClassificationTrainingParameters, Depends(map_text_classification_training_parameters)], # training_data_csv: Annotated[UploadFile, File(description="The CSV file containing the training data, necessary columns `value` (text data) and `target` (classification).")], # token_data: dict = Depends(verify_token), # project_name: str = Form(description="The name of the project. Will also be used as name of resulting model that will be created after fine tuning and as the name of the repository at huggingface."), # training_csv_limiter: str = Form(';', description="The delimiter used in the CSV file."), # source_model_name: str = Form('distilbert/distilbert-base-uncased'), # ): # """Start fine tuning an text classification model with the provided data.""" # # check if training is running, if so then exit # status = classification_trainer.get_task_status() # if status.get_status() == Status.IN_PROGRESS or status.get_status() == Status.CANCELLING: # raise HTTPException(status_code=405, detail="Training is already in progress") # # Ensure the uploaded file is a CSV file # if not training_data_csv.filename.endswith(".csv"): # raise HTTPException(status_code=422, detail="Uploaded file is not a csv file.") # try: # # Create a temporary directory to extract the contents # tmp_path = os.path.join(tempfile.gettempdir(), 'training_data') # path = Path(tmp_path) # path.mkdir(parents=True, exist_ok=True) # contents = await training_data_csv.read() # csv_path = os.path.join(tmp_path, 'data.csv') # with open(csv_path, 'wb') as temp_file: # temp_file.write(contents) # # prepare parameters # parameters = TextClassificationParameters( # training_csv_file_path=csv_path, # training_csv_limiter=training_csv_limiter, # project_name=project_name, # source_model_name=source_model_name, # training_parameters=training_params # ) # # start training # await classification_trainer.start_training(TextClassificationTrainer(), parameters) # return ResponseModel(message="Training started.") # except Exception as e: # raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")