File size: 7,104 Bytes
909165d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
"""
@Desc: 2.1版本兼容 对应版本 v2.1 Emo and muti-lang optimize
"""
import torch
import commons
from .text import cleaned_text_to_sequence, get_bert
from .text.cleaner import clean_text


def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7):
    # 在此处实现当前版本的get_text
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)

    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2
        word2ph[0] += 1
    bert_ori = get_bert(
        norm_text, word2ph, language_str, device, style_text, style_weight
    )
    del word2ph
    assert bert_ori.shape[-1] == len(phone), phone

    if language_str == "ZH":
        bert = bert_ori
        ja_bert = torch.zeros(1024, len(phone))
        en_bert = torch.zeros(1024, len(phone))
    elif language_str == "JP":
        bert = torch.zeros(1024, len(phone))
        ja_bert = bert_ori
        en_bert = torch.zeros(1024, len(phone))
    elif language_str == "EN":
        bert = torch.zeros(1024, len(phone))
        ja_bert = torch.zeros(1024, len(phone))
        en_bert = bert_ori
    else:
        raise ValueError("language_str should be ZH, JP or EN")

    assert bert.shape[-1] == len(
        phone
    ), f"Bert seq len {bert.shape[-1]} != {len(phone)}"

    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)
    return bert, ja_bert, en_bert, phone, tone, language


def get_emo_(reference_audio, emotion):
    from .emo_gen import get_emo

    emo = (
        torch.from_numpy(get_emo(reference_audio))
        if reference_audio
        else torch.Tensor([emotion])
    )
    return emo


def infer(
    text,
    sdp_ratio,
    noise_scale,
    noise_scale_w,
    length_scale,
    sid,
    language,
    hps,
    net_g,
    device,
    reference_audio=None,
    emotion=None,
    skip_start=False,
    skip_end=False,
    style_text=None,
    style_weight=0.7,
):
    bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
        text, language, hps, device, style_text, style_weight
    )
    emo = get_emo_(reference_audio, emotion)
    if skip_start:
        phones = phones[1:]
        tones = tones[1:]
        lang_ids = lang_ids[1:]
        bert = bert[:, 1:]
        ja_bert = ja_bert[:, 1:]
        en_bert = en_bert[:, 1:]
    if skip_end:
        phones = phones[:-1]
        tones = tones[:-1]
        lang_ids = lang_ids[:-1]
        bert = bert[:, :-1]
        ja_bert = ja_bert[:, :-1]
        en_bert = en_bert[:, :-1]
    with torch.no_grad():
        x_tst = phones.to(device).unsqueeze(0)
        tones = tones.to(device).unsqueeze(0)
        lang_ids = lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        ja_bert = ja_bert.to(device).unsqueeze(0)
        en_bert = en_bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        emo = emo.to(device).unsqueeze(0)
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
        audio = (
            net_g.infer(
                x_tst,
                x_tst_lengths,
                speakers,
                tones,
                lang_ids,
                bert,
                ja_bert,
                en_bert,
                emo,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
            )[0][0, 0]
            .data.cpu()
            .float()
            .numpy()
        )
        del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers, ja_bert, en_bert, emo
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        return audio


def infer_multilang(
    text,
    sdp_ratio,
    noise_scale,
    noise_scale_w,
    length_scale,
    sid,
    language,
    hps,
    net_g,
    device,
    reference_audio=None,
    emotion=None,
    skip_start=False,
    skip_end=False,
):
    bert, ja_bert, en_bert, phones, tones, lang_ids = [], [], [], [], [], []
    emo = get_emo_(reference_audio, emotion)
    for idx, (txt, lang) in enumerate(zip(text, language)):
        skip_start = (idx != 0) or (skip_start and idx == 0)
        skip_end = (idx != len(text) - 1) or (skip_end and idx == len(text) - 1)
        (
            temp_bert,
            temp_ja_bert,
            temp_en_bert,
            temp_phones,
            temp_tones,
            temp_lang_ids,
        ) = get_text(txt, lang, hps, device)
        if skip_start:
            temp_bert = temp_bert[:, 1:]
            temp_ja_bert = temp_ja_bert[:, 1:]
            temp_en_bert = temp_en_bert[:, 1:]
            temp_phones = temp_phones[1:]
            temp_tones = temp_tones[1:]
            temp_lang_ids = temp_lang_ids[1:]
        if skip_end:
            temp_bert = temp_bert[:, :-1]
            temp_ja_bert = temp_ja_bert[:, :-1]
            temp_en_bert = temp_en_bert[:, :-1]
            temp_phones = temp_phones[:-1]
            temp_tones = temp_tones[:-1]
            temp_lang_ids = temp_lang_ids[:-1]
        bert.append(temp_bert)
        ja_bert.append(temp_ja_bert)
        en_bert.append(temp_en_bert)
        phones.append(temp_phones)
        tones.append(temp_tones)
        lang_ids.append(temp_lang_ids)
    bert = torch.concatenate(bert, dim=1)
    ja_bert = torch.concatenate(ja_bert, dim=1)
    en_bert = torch.concatenate(en_bert, dim=1)
    phones = torch.concatenate(phones, dim=0)
    tones = torch.concatenate(tones, dim=0)
    lang_ids = torch.concatenate(lang_ids, dim=0)
    with torch.no_grad():
        x_tst = phones.to(device).unsqueeze(0)
        tones = tones.to(device).unsqueeze(0)
        lang_ids = lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        ja_bert = ja_bert.to(device).unsqueeze(0)
        en_bert = en_bert.to(device).unsqueeze(0)
        emo = emo.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
        audio = (
            net_g.infer(
                x_tst,
                x_tst_lengths,
                speakers,
                tones,
                lang_ids,
                bert,
                ja_bert,
                en_bert,
                emo,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
            )[0][0, 0]
            .data.cpu()
            .float()
            .numpy()
        )
        del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers, ja_bert, en_bert, emo
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        return audio