doit
deploy init
909165d
import librosa
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from torch.utils.data import Dataset
from transformers import Wav2Vec2Processor
from transformers.models.wav2vec2.modeling_wav2vec2 import (
Wav2Vec2Model,
Wav2Vec2PreTrainedModel,
)
from config import config
class RegressionHead(nn.Module):
r"""Classification head."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.final_dropout)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class EmotionModel(Wav2Vec2PreTrainedModel):
r"""Speech emotion classifier."""
def __init__(self, config):
super().__init__(config)
self.config = config
self.wav2vec2 = Wav2Vec2Model(config)
self.classifier = RegressionHead(config)
self.init_weights()
def forward(
self,
input_values,
):
outputs = self.wav2vec2(input_values)
hidden_states = outputs[0]
hidden_states = torch.mean(hidden_states, dim=1)
logits = self.classifier(hidden_states)
return hidden_states, logits
class AudioDataset(Dataset):
def __init__(self, list_of_wav_files, sr, processor):
self.list_of_wav_files = list_of_wav_files
self.processor = processor
self.sr = sr
def __len__(self):
return len(self.list_of_wav_files)
def __getitem__(self, idx):
wav_file = self.list_of_wav_files[idx]
audio_data, _ = librosa.load(wav_file, sr=self.sr)
processed_data = self.processor(audio_data, sampling_rate=self.sr)[
"input_values"
][0]
return torch.from_numpy(processed_data)
device = config.emo_gen_config.device
model_name = "./emotional/wav2vec2-large-robust-12-ft-emotion-msp-dim"
processor = Wav2Vec2Processor.from_pretrained(model_name)
model = EmotionModel.from_pretrained(model_name).to(device)
def process_func(
x: np.ndarray,
sampling_rate: int,
model: EmotionModel,
processor: Wav2Vec2Processor,
device: str,
embeddings: bool = False,
) -> np.ndarray:
r"""Predict emotions or extract embeddings from raw audio signal."""
model = model.to(device)
y = processor(x, sampling_rate=sampling_rate)
y = y["input_values"][0]
y = torch.from_numpy(y).unsqueeze(0).to(device)
# run through model
with torch.no_grad():
y = model(y)[0 if embeddings else 1]
# convert to numpy
y = y.detach().cpu().numpy()
return y
def get_emo(path):
wav, sr = librosa.load(path, 16000)
return process_func(
np.expand_dims(wav, 0).astype(np.float64),
sr,
model,
processor,
device,
embeddings=True,
).squeeze(0)