File size: 5,077 Bytes
8b14bed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Fish Speech"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### For Windows User / win用户"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "vscode": {
     "languageId": "bat"
    }
   },
   "outputs": [],
   "source": [
    "!chcp 65001"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### For Linux User / Linux 用户"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import locale\n",
    "locale.setlocale(locale.LC_ALL, 'en_US.UTF-8')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Prepare Model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# For Chinese users, you probably want to use mirror to accelerate downloading\n",
    "# !set HF_ENDPOINT=https://hf-mirror.com\n",
    "# !export HF_ENDPOINT=https://hf-mirror.com \n",
    "\n",
    "!huggingface-cli download fishaudio/fish-speech-1.4 --local-dir checkpoints/fish-speech-1.4/"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## WebUI Inference\n",
    "\n",
    "> You can use --compile to fuse CUDA kernels for faster inference (10x)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "vscode": {
     "languageId": "shellscript"
    }
   },
   "outputs": [],
   "source": [
    "!python tools/webui.py \\\n",
    "    --llama-checkpoint-path checkpoints/fish-speech-1.4 \\\n",
    "    --decoder-checkpoint-path checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth \\\n",
    "    # --compile"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Break-down CLI Inference"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 1. Encode reference audio: / 从语音生成 prompt: \n",
    "\n",
    "You should get a `fake.npy` file.\n",
    "\n",
    "你应该能得到一个 `fake.npy` 文件."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "vscode": {
     "languageId": "shellscript"
    }
   },
   "outputs": [],
   "source": [
    "## Enter the path to the audio file here\n",
    "src_audio = r\"D:\\PythonProject\\vo_hutao_draw_appear.wav\"\n",
    "\n",
    "!python tools/vqgan/inference.py \\\n",
    "    -i {src_audio} \\\n",
    "    --checkpoint-path \"checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth\"\n",
    "\n",
    "from IPython.display import Audio, display\n",
    "audio = Audio(filename=\"fake.wav\")\n",
    "display(audio)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 2. Generate semantic tokens from text: / 从文本生成语义 token:\n",
    "\n",
    "> This command will create a codes_N file in the working directory, where N is an integer starting from 0.\n",
    "\n",
    "> You may want to use `--compile` to fuse CUDA kernels for faster inference (~30 tokens/second -> ~300 tokens/second).\n",
    "\n",
    "> 该命令会在工作目录下创建 codes_N 文件, 其中 N 是从 0 开始的整数.\n",
    "\n",
    "> 您可以使用 `--compile` 来融合 cuda 内核以实现更快的推理 (~30 tokens/秒 -> ~300 tokens/秒)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "vscode": {
     "languageId": "shellscript"
    }
   },
   "outputs": [],
   "source": [
    "!python tools/llama/generate.py \\\n",
    "    --text \"hello world\" \\\n",
    "    --prompt-text \"The text corresponding to reference audio\" \\\n",
    "    --prompt-tokens \"fake.npy\" \\\n",
    "    --checkpoint-path \"checkpoints/fish-speech-1.4\" \\\n",
    "    --num-samples 2\n",
    "    # --compile"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 3. Generate speech from semantic tokens: / 从语义 token 生成人声:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "vscode": {
     "languageId": "shellscript"
    }
   },
   "outputs": [],
   "source": [
    "!python tools/vqgan/inference.py \\\n",
    "    -i \"codes_0.npy\" \\\n",
    "    --checkpoint-path \"checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth\"\n",
    "\n",
    "from IPython.display import Audio, display\n",
    "audio = Audio(filename=\"fake.wav\")\n",
    "display(audio)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.14"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}