Spaces:
No application file
No application file
File size: 8,908 Bytes
8b14bed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import io
import re
import wave
import gradio as gr
import numpy as np
from .fish_e2e import FishE2EAgent, FishE2EEventType
from .schema import ServeMessage, ServeTextPart, ServeVQPart
def wav_chunk_header(sample_rate=44100, bit_depth=16, channels=1):
buffer = io.BytesIO()
with wave.open(buffer, "wb") as wav_file:
wav_file.setnchannels(channels)
wav_file.setsampwidth(bit_depth // 8)
wav_file.setframerate(sample_rate)
wav_header_bytes = buffer.getvalue()
buffer.close()
return wav_header_bytes
class ChatState:
def __init__(self):
self.conversation = []
self.added_systext = False
self.added_sysaudio = False
def get_history(self):
results = []
for msg in self.conversation:
results.append({"role": msg.role, "content": self.repr_message(msg)})
# Process assistant messages to extract questions and update user messages
for i, msg in enumerate(results):
if msg["role"] == "assistant":
match = re.search(r"Question: (.*?)\n\nResponse:", msg["content"])
if match and i > 0 and results[i - 1]["role"] == "user":
# Update previous user message with extracted question
results[i - 1]["content"] += "\n" + match.group(1)
# Remove the Question/Answer format from assistant message
msg["content"] = msg["content"].split("\n\nResponse: ", 1)[1]
return results
def repr_message(self, msg: ServeMessage):
response = ""
for part in msg.parts:
if isinstance(part, ServeTextPart):
response += part.text
elif isinstance(part, ServeVQPart):
response += f"<audio {len(part.codes[0]) / 21:.2f}s>"
return response
def clear_fn():
return [], ChatState(), None, None, None
async def process_audio_input(
sys_audio_input, sys_text_input, audio_input, state: ChatState, text_input: str
):
if audio_input is None and not text_input:
raise gr.Error("No input provided")
agent = FishE2EAgent() # Create new agent instance for each request
# Convert audio input to numpy array
if isinstance(audio_input, tuple):
sr, audio_data = audio_input
elif text_input:
sr = 44100
audio_data = None
else:
raise gr.Error("Invalid audio format")
if isinstance(sys_audio_input, tuple):
sr, sys_audio_data = sys_audio_input
else:
sr = 44100
sys_audio_data = None
def append_to_chat_ctx(
part: ServeTextPart | ServeVQPart, role: str = "assistant"
) -> None:
if not state.conversation or state.conversation[-1].role != role:
state.conversation.append(ServeMessage(role=role, parts=[part]))
else:
state.conversation[-1].parts.append(part)
if state.added_systext is False and sys_text_input:
state.added_systext = True
append_to_chat_ctx(ServeTextPart(text=sys_text_input), role="system")
if text_input:
append_to_chat_ctx(ServeTextPart(text=text_input), role="user")
audio_data = None
result_audio = b""
async for event in agent.stream(
sys_audio_data,
audio_data,
sr,
1,
chat_ctx={
"messages": state.conversation,
"added_sysaudio": state.added_sysaudio,
},
):
if event.type == FishE2EEventType.USER_CODES:
append_to_chat_ctx(ServeVQPart(codes=event.vq_codes), role="user")
elif event.type == FishE2EEventType.SPEECH_SEGMENT:
append_to_chat_ctx(ServeVQPart(codes=event.vq_codes))
yield state.get_history(), wav_chunk_header() + event.frame.data, None, None
elif event.type == FishE2EEventType.TEXT_SEGMENT:
append_to_chat_ctx(ServeTextPart(text=event.text))
yield state.get_history(), None, None, None
yield state.get_history(), None, None, None
async def process_text_input(
sys_audio_input, sys_text_input, state: ChatState, text_input: str
):
async for event in process_audio_input(
sys_audio_input, sys_text_input, None, state, text_input
):
yield event
def create_demo():
with gr.Blocks() as demo:
state = gr.State(ChatState())
with gr.Row():
# Left column (70%) for chatbot and notes
with gr.Column(scale=7):
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
bubble_full_width=False,
height=600,
type="messages",
)
# notes = gr.Markdown(
# """
# # Fish Agent
# 1. 此Demo为Fish Audio自研端到端语言模型Fish Agent 3B版本.
# 2. 你可以在我们的官方仓库找到代码以及权重,但是相关内容全部基于 CC BY-NC-SA 4.0 许可证发布.
# 3. Demo为早期灰度测试版本,推理速度尚待优化.
# # 特色
# 1. 该模型自动集成ASR与TTS部分,不需要外挂其它模型,即真正的端到端,而非三段式(ASR+LLM+TTS).
# 2. 模型可以使用reference audio控制说话音色.
# 3. 可以生成具有较强情感与韵律的音频.
# """
# )
notes = gr.Markdown(
"""
# Fish Agent
1. This demo is Fish Audio's self-researh end-to-end language model, Fish Agent version 3B.
2. You can find the code and weights in our official repo in [gitub](https://github.com/fishaudio/fish-speech) and [hugging face](https://huggingface.co/fishaudio/fish-agent-v0.1-3b), but the content is released under a CC BY-NC-SA 4.0 licence.
3. The demo is an early alpha test version, the inference speed needs to be optimised.
# Features
1. The model automatically integrates ASR and TTS parts, no need to plug-in other models, i.e., true end-to-end, not three-stage (ASR+LLM+TTS).
2. The model can use reference audio to control the speech timbre.
3. The model can generate speech with strong emotion.
"""
)
# Right column (30%) for controls
with gr.Column(scale=3):
sys_audio_input = gr.Audio(
sources=["upload"],
type="numpy",
label="Give a timbre for your assistant",
)
sys_text_input = gr.Textbox(
label="What is your assistant's role?",
value="You are a voice assistant created by Fish Audio, offering end-to-end voice interaction for a seamless user experience. You are required to first transcribe the user's speech, then answer it in the following format: 'Question: [USER_SPEECH]\n\nAnswer: [YOUR_RESPONSE]\n'. You are required to use the following voice in this conversation.",
type="text",
)
audio_input = gr.Audio(
sources=["microphone"], type="numpy", label="Speak your message"
)
text_input = gr.Textbox(label="Or type your message", type="text")
output_audio = gr.Audio(
label="Assistant's Voice",
streaming=True,
autoplay=True,
interactive=False,
)
send_button = gr.Button("Send", variant="primary")
clear_button = gr.Button("Clear")
# Event handlers
audio_input.stop_recording(
process_audio_input,
inputs=[sys_audio_input, sys_text_input, audio_input, state, text_input],
outputs=[chatbot, output_audio, audio_input, text_input],
show_progress=True,
)
send_button.click(
process_text_input,
inputs=[sys_audio_input, sys_text_input, state, text_input],
outputs=[chatbot, output_audio, audio_input, text_input],
show_progress=True,
)
text_input.submit(
process_text_input,
inputs=[sys_audio_input, sys_text_input, state, text_input],
outputs=[chatbot, output_audio, audio_input, text_input],
show_progress=True,
)
clear_button.click(
clear_fn,
inputs=[],
outputs=[chatbot, state, audio_input, output_audio, text_input],
)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch(server_name="127.0.0.1", server_port=7860, share=True)
|