File size: 8,908 Bytes
8b14bed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import io
import re
import wave

import gradio as gr
import numpy as np

from .fish_e2e import FishE2EAgent, FishE2EEventType
from .schema import ServeMessage, ServeTextPart, ServeVQPart


def wav_chunk_header(sample_rate=44100, bit_depth=16, channels=1):
    buffer = io.BytesIO()

    with wave.open(buffer, "wb") as wav_file:
        wav_file.setnchannels(channels)
        wav_file.setsampwidth(bit_depth // 8)
        wav_file.setframerate(sample_rate)

    wav_header_bytes = buffer.getvalue()
    buffer.close()
    return wav_header_bytes


class ChatState:
    def __init__(self):
        self.conversation = []
        self.added_systext = False
        self.added_sysaudio = False

    def get_history(self):
        results = []
        for msg in self.conversation:
            results.append({"role": msg.role, "content": self.repr_message(msg)})

        # Process assistant messages to extract questions and update user messages
        for i, msg in enumerate(results):
            if msg["role"] == "assistant":
                match = re.search(r"Question: (.*?)\n\nResponse:", msg["content"])
                if match and i > 0 and results[i - 1]["role"] == "user":
                    # Update previous user message with extracted question
                    results[i - 1]["content"] += "\n" + match.group(1)
                    # Remove the Question/Answer format from assistant message
                    msg["content"] = msg["content"].split("\n\nResponse: ", 1)[1]
        return results

    def repr_message(self, msg: ServeMessage):
        response = ""
        for part in msg.parts:
            if isinstance(part, ServeTextPart):
                response += part.text
            elif isinstance(part, ServeVQPart):
                response += f"<audio {len(part.codes[0]) / 21:.2f}s>"
        return response


def clear_fn():
    return [], ChatState(), None, None, None


async def process_audio_input(
    sys_audio_input, sys_text_input, audio_input, state: ChatState, text_input: str
):
    if audio_input is None and not text_input:
        raise gr.Error("No input provided")

    agent = FishE2EAgent()  # Create new agent instance for each request

    # Convert audio input to numpy array
    if isinstance(audio_input, tuple):
        sr, audio_data = audio_input
    elif text_input:
        sr = 44100
        audio_data = None
    else:
        raise gr.Error("Invalid audio format")

    if isinstance(sys_audio_input, tuple):
        sr, sys_audio_data = sys_audio_input
    else:
        sr = 44100
        sys_audio_data = None

    def append_to_chat_ctx(
        part: ServeTextPart | ServeVQPart, role: str = "assistant"
    ) -> None:
        if not state.conversation or state.conversation[-1].role != role:
            state.conversation.append(ServeMessage(role=role, parts=[part]))
        else:
            state.conversation[-1].parts.append(part)

    if state.added_systext is False and sys_text_input:
        state.added_systext = True
        append_to_chat_ctx(ServeTextPart(text=sys_text_input), role="system")
    if text_input:
        append_to_chat_ctx(ServeTextPart(text=text_input), role="user")
        audio_data = None

    result_audio = b""
    async for event in agent.stream(
        sys_audio_data,
        audio_data,
        sr,
        1,
        chat_ctx={
            "messages": state.conversation,
            "added_sysaudio": state.added_sysaudio,
        },
    ):
        if event.type == FishE2EEventType.USER_CODES:
            append_to_chat_ctx(ServeVQPart(codes=event.vq_codes), role="user")
        elif event.type == FishE2EEventType.SPEECH_SEGMENT:
            append_to_chat_ctx(ServeVQPart(codes=event.vq_codes))
            yield state.get_history(), wav_chunk_header() + event.frame.data, None, None
        elif event.type == FishE2EEventType.TEXT_SEGMENT:
            append_to_chat_ctx(ServeTextPart(text=event.text))
            yield state.get_history(), None, None, None

    yield state.get_history(), None, None, None


async def process_text_input(
    sys_audio_input, sys_text_input, state: ChatState, text_input: str
):
    async for event in process_audio_input(
        sys_audio_input, sys_text_input, None, state, text_input
    ):
        yield event


def create_demo():
    with gr.Blocks() as demo:
        state = gr.State(ChatState())

        with gr.Row():
            # Left column (70%) for chatbot and notes
            with gr.Column(scale=7):
                chatbot = gr.Chatbot(
                    [],
                    elem_id="chatbot",
                    bubble_full_width=False,
                    height=600,
                    type="messages",
                )

                # notes = gr.Markdown(
                #     """
                # # Fish Agent
                # 1. 此Demo为Fish Audio自研端到端语言模型Fish Agent 3B版本.
                # 2. 你可以在我们的官方仓库找到代码以及权重,但是相关内容全部基于 CC BY-NC-SA 4.0 许可证发布.
                # 3. Demo为早期灰度测试版本,推理速度尚待优化.
                # # 特色
                # 1. 该模型自动集成ASR与TTS部分,不需要外挂其它模型,即真正的端到端,而非三段式(ASR+LLM+TTS).
                # 2. 模型可以使用reference audio控制说话音色.
                # 3. 可以生成具有较强情感与韵律的音频.
                # """
                # )
                notes = gr.Markdown(
                    """
                    # Fish Agent
                    1. This demo is Fish Audio's self-researh end-to-end language model, Fish Agent version 3B.
                    2. You can find the code and weights in our official repo in [gitub](https://github.com/fishaudio/fish-speech) and [hugging face](https://huggingface.co/fishaudio/fish-agent-v0.1-3b), but the content is released under a CC BY-NC-SA 4.0 licence.
                    3. The demo is an early alpha test version, the inference speed needs to be optimised.
                    # Features
                    1. The model automatically integrates ASR and TTS parts, no need to plug-in other models, i.e., true end-to-end, not three-stage (ASR+LLM+TTS).
                    2. The model can use reference audio to control the speech timbre. 
                    3. The model can generate speech with strong emotion.
                """
                )

            # Right column (30%) for controls
            with gr.Column(scale=3):
                sys_audio_input = gr.Audio(
                    sources=["upload"],
                    type="numpy",
                    label="Give a timbre for your assistant",
                )
                sys_text_input = gr.Textbox(
                    label="What is your assistant's role?",
                    value="You are a voice assistant created by Fish Audio, offering end-to-end voice interaction for a seamless user experience. You are required to first transcribe the user's speech, then answer it in the following format: 'Question: [USER_SPEECH]\n\nAnswer: [YOUR_RESPONSE]\n'. You are required to use the following voice in this conversation.",
                    type="text",
                )
                audio_input = gr.Audio(
                    sources=["microphone"], type="numpy", label="Speak your message"
                )

                text_input = gr.Textbox(label="Or type your message", type="text")

                output_audio = gr.Audio(
                    label="Assistant's Voice",
                    streaming=True,
                    autoplay=True,
                    interactive=False,
                )

                send_button = gr.Button("Send", variant="primary")
                clear_button = gr.Button("Clear")

        # Event handlers
        audio_input.stop_recording(
            process_audio_input,
            inputs=[sys_audio_input, sys_text_input, audio_input, state, text_input],
            outputs=[chatbot, output_audio, audio_input, text_input],
            show_progress=True,
        )

        send_button.click(
            process_text_input,
            inputs=[sys_audio_input, sys_text_input, state, text_input],
            outputs=[chatbot, output_audio, audio_input, text_input],
            show_progress=True,
        )

        text_input.submit(
            process_text_input,
            inputs=[sys_audio_input, sys_text_input, state, text_input],
            outputs=[chatbot, output_audio, audio_input, text_input],
            show_progress=True,
        )

        clear_button.click(
            clear_fn,
            inputs=[],
            outputs=[chatbot, state, audio_input, output_audio, text_input],
        )

    return demo


if __name__ == "__main__":
    demo = create_demo()
    demo.launch(server_name="127.0.0.1", server_port=7860, share=True)