File size: 3,273 Bytes
8b14bed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import shutil
from copy import deepcopy
from pathlib import Path

import click
import hydra
import torch
from hydra import compose, initialize
from hydra.utils import instantiate
from loguru import logger

from fish_speech.models.text2semantic.llama import BaseTransformer
from fish_speech.models.text2semantic.lora import get_merged_state_dict


@click.command()
@click.option("--lora-config", type=str, default="r_8_alpha_16")
@click.option("--base-weight", type=str, default="checkpoints/fish-speech-1.4")
@click.option("--lora-weight", type=str, required=True)
@click.option("--output", type=str, required=True)
def merge(lora_config, base_weight, lora_weight, output):
    output = Path(output)
    logger.info(
        f"Merging {base_weight} and {lora_weight} into {output} with {lora_config}"
    )

    with initialize(version_base="1.3", config_path="../../fish_speech/configs/lora"):
        cfg = compose(config_name=lora_config)

    lora_config = instantiate(cfg)
    logger.info(f"Loaded lora model with config {lora_config}")

    llama_model = BaseTransformer.from_pretrained(
        path=base_weight,
        load_weights=True,
        lora_config=lora_config,
    )
    logger.info(f"Loaded llama model")

    llama_state_dict = llama_model.state_dict()
    llama_state_dict = {k: v for k, v in llama_state_dict.items() if "lora" not in k}
    llama_state_dict_copy = deepcopy(llama_state_dict)
    lora_state_dict = torch.load(lora_weight, map_location="cpu")

    if "state_dict" in llama_state_dict:
        llama_state_dict = llama_state_dict["state_dict"]

    if "state_dict" in lora_state_dict:
        lora_state_dict = lora_state_dict["state_dict"]

    # remove prefix model.
    if any(k.startswith("model.") for k in llama_state_dict.keys()):
        llama_state_dict = {
            k.replace("model.", ""): v
            for k, v in llama_state_dict.items()
            if k.startswith("model.")
        }
    if any(k.startswith("model.") for k in lora_state_dict.keys()):
        lora_state_dict = {
            k.replace("model.", ""): v
            for k, v in lora_state_dict.items()
            if k.startswith("model.")
        }

    logger.info(f"Found {len(llama_state_dict)} keys in llama model")
    logger.info(f"Found {len(lora_state_dict)} keys in lora model")

    merged_state_dict = llama_state_dict | lora_state_dict
    llama_model.load_state_dict(merged_state_dict, strict=True)
    logger.info(f"Merged model loaded")

    # Trigger eval mode to merge lora
    llama_model.eval()
    llama_model.save_pretrained(output, drop_lora=True)
    logger.info(f"Saved merged model to {output}, validating")

    new_state_dict = torch.load(output / "model.pth", map_location="cpu")
    original_keys = set(llama_state_dict_copy.keys())
    merged_keys = set(new_state_dict.keys())

    assert original_keys == merged_keys, "Keys should be same"

    for key in original_keys:
        diff_l1 = (new_state_dict[key] - llama_state_dict_copy[key]).abs().sum().item()
        if diff_l1 != 0:
            break
    else:
        logger.error("Merged model is same as the original model")
        exit(1)

    logger.info("Merged model is different from the original model, check passed")


if __name__ == "__main__":
    merge()