File size: 7,401 Bytes
8b14bed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
from dataclasses import dataclass, field
from typing import Literal

import torch
from transformers import AutoTokenizer, PretrainedConfig, PreTrainedTokenizerFast

IM_START_TOKEN = "<|im_start|>"
IM_END_TOKEN = "<|im_end|>"
SEMANTIC_TOKEN = "<|semantic|>"
MEL_TOKEN = "<|mel|>"
PHONEME_START_TOKEN = "<|phoneme_start|>"
PHONEME_END_TOKEN = "<|phoneme_end|>"
ALL_SPECIAL_TOKENS = [
    IM_START_TOKEN,
    IM_END_TOKEN,
    SEMANTIC_TOKEN,
    MEL_TOKEN,
    PHONEME_START_TOKEN,
    PHONEME_END_TOKEN,
]

CODEBOOK_PAD_TOKEN_ID = 0


class FishTokenizerConfig(PretrainedConfig):
    share_codebook_embeddings: bool = True
    codebook_size: int = 1024
    num_codebooks: int = 8


class FishTokenizerFast(PreTrainedTokenizerFast):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.share_codebook_embeddings = kwargs.pop("share_codebook_embeddings", True)
        self.codebook_size = kwargs.pop("codebook_size", 1024)
        self.num_codebooks = kwargs.pop("num_codebooks", 8)


AutoTokenizer.register(FishTokenizerConfig, fast_tokenizer_class=FishTokenizerFast)


@dataclass(kw_only=True)
class BasePart:
    pass


@dataclass(kw_only=True)
class VQPart(BasePart):
    codes: torch.Tensor


@dataclass(kw_only=True)
class TextPart(BasePart):
    text: str


@dataclass(kw_only=True)
class MelPart(BasePart):
    mels: torch.Tensor


@dataclass(kw_only=True)
class EncodedMessage:
    tokens: torch.Tensor
    labels: torch.Tensor
    vq_parts: list[torch.Tensor]
    mel_parts: list[torch.Tensor]
    vq_require_losses: torch.Tensor | None = None


@dataclass(kw_only=True)
class Message:
    role: Literal["system", "user", "assistant"]
    parts: list[VQPart | TextPart | MelPart] = field(default_factory=list)
    add_im_start: bool = True
    add_im_end: bool = True
    cal_loss: bool = False

    # By default, ignore the loss of the auto-generated im_start token
    ignore_im_start_loss: bool = True

    def encode(
        self: "Message",
        tokenizer: AutoTokenizer,
    ) -> EncodedMessage:
        all_tokens = []
        all_labels = []

        # Multi-modal tokens
        vq_parts = []
        mel_parts = []

        semantic_id, mel_id = tokenizer.convert_tokens_to_ids(
            [SEMANTIC_TOKEN, MEL_TOKEN]
        )

        parts = self.parts.copy()
        if self.add_im_start:
            parts.insert(0, TextPart(text=f"<|im_start|>{self.role}\n"))

        if self.add_im_end:
            parts.append(TextPart(text="<|im_end|>"))

        for part in parts:
            if isinstance(part, TextPart):
                tokens = tokenizer.encode(
                    part.text,
                    add_special_tokens=False,
                    truncation=False,
                    return_tensors="pt",
                ).int()[0]
            elif isinstance(part, VQPart):
                tokens = torch.zeros(part.codes.shape[1], dtype=torch.int) + semantic_id
                codes = part.codes.clone() + 1

                if getattr(tokenizer, "share_codebook_embeddings", True) is False:
                    for i in range(len(codes)):
                        codes[i] += tokenizer.codebook_size * i

                vq_parts.append(codes)
            elif isinstance(part, MelPart):
                tokens = torch.zeros(part.mels.shape[1], dtype=torch.int) + mel_id
                mel_parts.append(part.mels)
            else:
                raise ValueError(f"Unsupported part type: {type(part)}")

            all_tokens.append(tokens)
            if self.cal_loss:
                all_labels.append(tokens.clone())
            else:
                all_labels.append(torch.full_like(tokens, -100))

        tokens = torch.cat(all_tokens, dim=0)
        labels = torch.cat(all_labels, dim=0)
        assert tokens.shape == labels.shape

        if self.ignore_im_start_loss and self.add_im_start:
            labels[: len(all_tokens[0])] = -100

        return EncodedMessage(
            tokens=tokens,
            labels=labels,
            vq_parts=vq_parts,
            mel_parts=mel_parts,
        )


@dataclass
class Conversation:
    messages: list[Message]

    def encode(
        self: "Conversation",
        tokenizer: AutoTokenizer,
        add_shift: bool = True,
    ) -> EncodedMessage:
        # Build the input_ids and labels
        tokens = []
        labels = []
        vq_parts = []
        mel_parts = []
        vq_require_losses = []

        for message in self.messages:
            encoded = message.encode(
                tokenizer,
            )
            tokens.append(encoded.tokens)
            labels.append(encoded.labels)
            vq_parts.extend(encoded.vq_parts)
            mel_parts.extend(encoded.mel_parts)
            vq_require_losses.extend([message.cal_loss] * len(encoded.vq_parts))

        tokens = torch.cat(tokens, dim=0)
        labels = torch.cat(labels, dim=0)
        vq_require_losses = torch.tensor(vq_require_losses, dtype=torch.bool)

        if add_shift:
            tokens = tokens[:-1]
            labels = labels[1:]

        assert tokens.dtype in [
            torch.int,
            torch.long,
        ], f"Invalid dtype: {tokens.dtype}, conv: {conversation}"

        return EncodedMessage(
            tokens=tokens,
            labels=labels,
            vq_parts=vq_parts,
            mel_parts=mel_parts,
            vq_require_losses=vq_require_losses,
        )

    def encode_for_inference(
        self: "Conversation",
        tokenizer: AutoTokenizer,
        num_codebooks: int,
    ) -> EncodedMessage:
        encoded = self.encode(tokenizer, add_shift=False)
        tokens = encoded.tokens
        values = torch.zeros((num_codebooks + 1, len(tokens)), dtype=torch.int)
        values[0] = tokens

        if encoded.vq_parts is None or len(encoded.vq_parts) == 0:
            return values

        semantic_id, mel_id = tokenizer.convert_tokens_to_ids(
            [SEMANTIC_TOKEN, MEL_TOKEN]
        )
        vq_parts = encoded.vq_parts
        vq_parts = torch.cat(vq_parts, dim=1)
        values[1:, tokens == semantic_id] = vq_parts
        return values

    def visualize(self: "Conversation", tokenizer: AutoTokenizer):
        encoded = self.encode(tokenizer, add_shift=False)

        print_in_blue = lambda x: print("\033[94m" + x + "\033[0m", end="")
        print_in_green = lambda x: print("\033[92m" + x + "\033[0m", end="")

        for tok, lab in zip(encoded.tokens, encoded.labels):
            val = tokenizer.decode(tok, skip_special_tokens=False)
            if val == "\n":
                val = "\\n\n"

            if lab == -100:
                print_in_green(val)
            else:
                print_in_blue(val)

        print()


if __name__ == "__main__":
    message0 = Message(
        role="user",
        parts=[
            TextPart(text="Hello, how are you?"),
            VQPart(codes=torch.zeros((4, 10))),
        ],
        cal_loss=False,
    )

    message1 = Message(
        role="assistant",
        parts=[TextPart(text="I'm fine, thank you.")],
        cal_loss=True,
    )
    conversation = Conversation([message0, message1])
    tokenizer = AutoTokenizer.from_pretrained("checkpoints/Qwen2-1.5B-Instruct")
    conversation.visualize(tokenizer)

    encoded = conversation.encode(tokenizer)
    print(encoded)
    print(tokenizer.batch_decode(encoded.tokens))