File size: 1,514 Bytes
8b14bed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from typing import List

import hydra
from omegaconf import DictConfig
from pytorch_lightning import Callback
from pytorch_lightning.loggers import Logger

from .logger import RankedLogger

log = RankedLogger(__name__, rank_zero_only=True)


def instantiate_callbacks(callbacks_cfg: DictConfig) -> List[Callback]:
    """Instantiates callbacks from config."""

    callbacks: List[Callback] = []

    if not callbacks_cfg:
        log.warning("No callback configs found! Skipping..")
        return callbacks

    if not isinstance(callbacks_cfg, DictConfig):
        raise TypeError("Callbacks config must be a DictConfig!")

    for _, cb_conf in callbacks_cfg.items():
        if isinstance(cb_conf, DictConfig) and "_target_" in cb_conf:
            log.info(f"Instantiating callback <{cb_conf._target_}>")
            callbacks.append(hydra.utils.instantiate(cb_conf))

    return callbacks


def instantiate_loggers(logger_cfg: DictConfig) -> List[Logger]:
    """Instantiates loggers from config."""

    logger: List[Logger] = []

    if not logger_cfg:
        log.warning("No logger configs found! Skipping...")
        return logger

    if not isinstance(logger_cfg, DictConfig):
        raise TypeError("Logger config must be a DictConfig!")

    for _, lg_conf in logger_cfg.items():
        if isinstance(lg_conf, DictConfig) and "_target_" in lg_conf:
            log.info(f"Instantiating logger <{lg_conf._target_}>")
            logger.append(hydra.utils.instantiate(lg_conf))

    return logger