File size: 3,239 Bytes
8b14bed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import torch
import torchaudio.functional as F
from torch import Tensor, nn
from torchaudio.transforms import MelScale


class LinearSpectrogram(nn.Module):
    def __init__(
        self,
        n_fft=2048,
        win_length=2048,
        hop_length=512,
        center=False,
        mode="pow2_sqrt",
    ):
        super().__init__()

        self.n_fft = n_fft
        self.win_length = win_length
        self.hop_length = hop_length
        self.center = center
        self.mode = mode

        self.register_buffer("window", torch.hann_window(win_length), persistent=False)

    def forward(self, y: Tensor) -> Tensor:
        if y.ndim == 3:
            y = y.squeeze(1)

        y = torch.nn.functional.pad(
            y.unsqueeze(1),
            (
                (self.win_length - self.hop_length) // 2,
                (self.win_length - self.hop_length + 1) // 2,
            ),
            mode="reflect",
        ).squeeze(1)

        spec = torch.stft(
            y,
            self.n_fft,
            hop_length=self.hop_length,
            win_length=self.win_length,
            window=self.window,
            center=self.center,
            pad_mode="reflect",
            normalized=False,
            onesided=True,
            return_complex=True,
        )

        spec = torch.view_as_real(spec)

        if self.mode == "pow2_sqrt":
            spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)

        return spec


class LogMelSpectrogram(nn.Module):
    def __init__(
        self,
        sample_rate=44100,
        n_fft=2048,
        win_length=2048,
        hop_length=512,
        n_mels=128,
        center=False,
        f_min=0.0,
        f_max=None,
    ):
        super().__init__()

        self.sample_rate = sample_rate
        self.n_fft = n_fft
        self.win_length = win_length
        self.hop_length = hop_length
        self.center = center
        self.n_mels = n_mels
        self.f_min = f_min
        self.f_max = f_max or float(sample_rate // 2)

        self.spectrogram = LinearSpectrogram(n_fft, win_length, hop_length, center)

        fb = F.melscale_fbanks(
            n_freqs=self.n_fft // 2 + 1,
            f_min=self.f_min,
            f_max=self.f_max,
            n_mels=self.n_mels,
            sample_rate=self.sample_rate,
            norm="slaney",
            mel_scale="slaney",
        )
        self.register_buffer(
            "fb",
            fb,
            persistent=False,
        )

    def compress(self, x: Tensor) -> Tensor:
        return torch.log(torch.clamp(x, min=1e-5))

    def decompress(self, x: Tensor) -> Tensor:
        return torch.exp(x)

    def apply_mel_scale(self, x: Tensor) -> Tensor:
        return torch.matmul(x.transpose(-1, -2), self.fb).transpose(-1, -2)

    def forward(
        self, x: Tensor, return_linear: bool = False, sample_rate: int = None
    ) -> Tensor:
        if sample_rate is not None and sample_rate != self.sample_rate:
            x = F.resample(x, orig_freq=sample_rate, new_freq=self.sample_rate)

        linear = self.spectrogram(x)
        x = self.apply_mel_scale(linear)
        x = self.compress(x)

        if return_linear:
            return x, self.compress(linear)

        return x