Spaces:
No application file
No application file
File size: 3,239 Bytes
8b14bed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import torch
import torchaudio.functional as F
from torch import Tensor, nn
from torchaudio.transforms import MelScale
class LinearSpectrogram(nn.Module):
def __init__(
self,
n_fft=2048,
win_length=2048,
hop_length=512,
center=False,
mode="pow2_sqrt",
):
super().__init__()
self.n_fft = n_fft
self.win_length = win_length
self.hop_length = hop_length
self.center = center
self.mode = mode
self.register_buffer("window", torch.hann_window(win_length), persistent=False)
def forward(self, y: Tensor) -> Tensor:
if y.ndim == 3:
y = y.squeeze(1)
y = torch.nn.functional.pad(
y.unsqueeze(1),
(
(self.win_length - self.hop_length) // 2,
(self.win_length - self.hop_length + 1) // 2,
),
mode="reflect",
).squeeze(1)
spec = torch.stft(
y,
self.n_fft,
hop_length=self.hop_length,
win_length=self.win_length,
window=self.window,
center=self.center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=True,
)
spec = torch.view_as_real(spec)
if self.mode == "pow2_sqrt":
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
return spec
class LogMelSpectrogram(nn.Module):
def __init__(
self,
sample_rate=44100,
n_fft=2048,
win_length=2048,
hop_length=512,
n_mels=128,
center=False,
f_min=0.0,
f_max=None,
):
super().__init__()
self.sample_rate = sample_rate
self.n_fft = n_fft
self.win_length = win_length
self.hop_length = hop_length
self.center = center
self.n_mels = n_mels
self.f_min = f_min
self.f_max = f_max or float(sample_rate // 2)
self.spectrogram = LinearSpectrogram(n_fft, win_length, hop_length, center)
fb = F.melscale_fbanks(
n_freqs=self.n_fft // 2 + 1,
f_min=self.f_min,
f_max=self.f_max,
n_mels=self.n_mels,
sample_rate=self.sample_rate,
norm="slaney",
mel_scale="slaney",
)
self.register_buffer(
"fb",
fb,
persistent=False,
)
def compress(self, x: Tensor) -> Tensor:
return torch.log(torch.clamp(x, min=1e-5))
def decompress(self, x: Tensor) -> Tensor:
return torch.exp(x)
def apply_mel_scale(self, x: Tensor) -> Tensor:
return torch.matmul(x.transpose(-1, -2), self.fb).transpose(-1, -2)
def forward(
self, x: Tensor, return_linear: bool = False, sample_rate: int = None
) -> Tensor:
if sample_rate is not None and sample_rate != self.sample_rate:
x = F.resample(x, orig_freq=sample_rate, new_freq=self.sample_rate)
linear = self.spectrogram(x)
x = self.apply_mel_scale(linear)
x = self.compress(x)
if return_linear:
return x, self.compress(linear)
return x
|