Spaces:
No application file
No application file
import random | |
from dataclasses import dataclass | |
from itertools import chain | |
from pathlib import Path | |
from random import Random | |
from typing import Optional, Union | |
import numpy as np | |
import pyarrow.parquet as pq | |
import torch | |
import torch.nn.functional as F | |
from datasets.download.streaming_download_manager import xopen | |
from huggingface_hub import HfApi | |
from lightning import LightningDataModule | |
from torch.distributed import get_rank, get_world_size, is_initialized | |
from torch.utils.data import DataLoader, IterableDataset, get_worker_info | |
from transformers import AutoTokenizer | |
from fish_speech.conversation import CODEBOOK_PAD_TOKEN_ID | |
from fish_speech.datasets.protos.text_data_pb2 import SampledData | |
from fish_speech.datasets.protos.text_data_stream import read_pb_stream | |
from fish_speech.text.clean import clean_text | |
from fish_speech.utils import RankedLogger | |
from fish_speech.utils.braceexpand import braceexpand | |
log = RankedLogger(__name__, rank_zero_only=True) | |
def split_by_rank_worker(files): | |
# We need to know the total number of devices | |
# to split the data properly | |
total_devices = 1 | |
if is_initialized(): | |
total_devices = get_world_size() | |
worker_info = get_worker_info() | |
if worker_info is not None: | |
total_devices *= worker_info.num_workers | |
if len(files) < total_devices: | |
# Repeat the files N times to match the number of devices | |
files = files * (total_devices // len(files) + 1) | |
# DDP | |
if is_initialized(): | |
files = files[get_rank() :: get_world_size()] | |
# Split by worker | |
if worker_info is not None: | |
files = files[worker_info.id :: worker_info.num_workers] | |
return files | |
class AutoTextSemanticInstructionDataset(IterableDataset): | |
""" | |
Auto Augment Dataset by Speaker | |
1. Random concatenate multiple sentences from the same speaker to form a longer sentence | |
2. Automatically normalize the text | |
For interactive mode, we use the following format (multiple sequences): | |
<s> [INST] [SPK: speaker] text [/INST] ... [INST] text [/INST] </s> | |
For non-interactive mode, we use the following format (one long sequence): | |
<s> [INST] text [/INST] ... </s> | |
""" | |
def __init__( | |
self, | |
proto_files: list[str], | |
seed: int = 42, | |
interactive_prob: float = 0.5, | |
max_length: int = 1024, | |
tokenizer: AutoTokenizer = None, | |
use_speaker: bool | float = True, | |
causal: bool = True, | |
num_codebooks: Optional[int] = None, | |
skip_text_prob: float = 0.0, | |
): | |
""" | |
Args: | |
proto_files: proto buf files if using local data | |
seed: random seed | |
interactive_prob: probability to use interactive mode | |
max_length: max length of the text | |
tokenizer: tokenizer | |
use_speaker: include speaker information in the prompt | |
causal: use causal sampling when using local data, disable will lead to random sampling | |
num_codebooks: number of codebooks, if None, it will be automatically detected | |
skip_text_prob: probability to skip the text (audio only), this only applies to interactive mode | |
""" | |
super().__init__() | |
assert 0 <= interactive_prob <= 1, "interactive_prob must be in [0, 1]" | |
self.seed = seed | |
self.max_length = max_length | |
self.tokenizer = tokenizer | |
self.interactive_prob = interactive_prob | |
self.use_speaker = use_speaker | |
self.proto_files = proto_files | |
self.causal = causal | |
self.num_codebooks = num_codebooks | |
self.skip_text_prob = skip_text_prob | |
self.semantic_token_id = self.tokenizer.convert_tokens_to_ids("<|semantic|>") | |
self.groups = None | |
def init_mock_data_server(self): | |
if self.groups is not None: | |
return | |
# Expand the proto files | |
expanded_proto_files = [] | |
for filename in self.proto_files: | |
for i in braceexpand(filename): | |
i = Path(i) | |
if i.is_file(): | |
expanded_proto_files.append(i) | |
elif i.is_dir(): | |
expanded_proto_files.extend(i.rglob("*.proto")) | |
expanded_proto_files.extend(i.rglob("*.protos")) | |
else: | |
raise ValueError(f"{i} is not a file or directory") | |
expanded_proto_files = sorted(expanded_proto_files) | |
Random(self.seed).shuffle(expanded_proto_files) | |
self.groups = [] | |
shard_proto_files = split_by_rank_worker(expanded_proto_files) | |
log.info( | |
f"Reading {len(shard_proto_files)} / {len(expanded_proto_files)} files" | |
) | |
count = 0 | |
for filename in shard_proto_files: | |
with open(filename, "rb") as f: | |
for text_data in read_pb_stream(f): | |
self.groups.append(text_data) | |
count += 1 | |
log.info(f"Read total {count} groups of data") | |
# Shuffle the lines | |
Random(self.seed).shuffle(self.groups) | |
self.group_weights = [len(i.sentences) for i in self.groups] | |
def __iter__(self): | |
while True: | |
yield self.augment() | |
def tokenize_sentence(self, sentence: str): | |
sentence = clean_text(sentence) | |
tokens = self.tokenizer.encode( | |
f"{sentence}", | |
max_length=10**6, | |
add_special_tokens=False, | |
truncation=False, | |
) | |
return sentence, len(tokens) | |
def sample_data(self): | |
if self.groups is None: | |
self.init_mock_data_server() | |
# Shuffle unique lines, estimate that each sample is at least 20 tokens | |
num_samples = self.max_length // 20 | |
# choice group based on their number of samples | |
group = random.choices(self.groups, weights=self.group_weights, k=1)[0] | |
if self.causal: | |
# Sample in order | |
if num_samples >= len(group.sentences): | |
samples = group.sentences | |
else: | |
begin = random.randint(0, len(group.sentences) - num_samples) | |
samples = group.sentences[begin : begin + num_samples] | |
else: | |
samples = random.choices( | |
group.sentences, k=min(num_samples, len(group.sentences)) | |
) | |
return SampledData( | |
source=group.source, | |
name=group.name, | |
samples=samples, | |
) | |
def augment(self): | |
final_text, final_semantic = [], [] | |
response = self.sample_data() | |
if len(response.samples) == 0: | |
# Invalid group | |
return None | |
samples = list(response.samples) | |
idx = 0 | |
use_interactive = random.random() < self.interactive_prob | |
if use_interactive is False: | |
# Random sample based on speaker using a truncated normal distribution | |
a = torch.tensor([0], dtype=torch.float32) | |
torch.nn.init.trunc_normal_( | |
a, | |
mean=self.max_length // 2, | |
std=self.max_length // 4, | |
a=10, | |
b=self.max_length, | |
) | |
remaining_tokens = a.long().item() - 4 | |
else: | |
remaining_tokens = self.max_length | |
# Use speaker | |
if isinstance(self.use_speaker, float): | |
use_speaker = random.random() < self.use_speaker | |
else: | |
use_speaker = self.use_speaker | |
all_tokens, all_labels = [], [] | |
while remaining_tokens > 0 and len(samples) > 0: | |
sentence = samples.pop(0) | |
text = random.choice(sentence.texts) | |
text, length = self.tokenize_sentence(text) | |
remaining_tokens -= length + len(sentence.semantics[0].values) | |
if use_interactive is False: | |
final_text.append(text) | |
final_semantic.append(sentence.semantics) | |
else: | |
# For interactive mode, we only apply speaker for the first sentence | |
# [INST] [SPK: speaker] text [/INST] ... [INST] text [/INST] | |
tokens, labels = self.pack_sentences( | |
sentences=[text], | |
semantics=[sentence.semantics], | |
speaker=response.name if use_speaker else None, | |
skip_text=random.random() < self.skip_text_prob, | |
) | |
all_tokens.append(tokens) | |
all_labels.append(labels) | |
idx += 1 | |
if use_interactive is False: | |
tokens, labels = self.pack_sentences( | |
final_text, | |
semantics=final_semantic, | |
speaker=response.name if use_speaker else None, | |
) | |
all_tokens.append(tokens) | |
all_labels.append(labels) | |
tokens = torch.cat(all_tokens, dim=1) | |
labels = torch.cat(all_labels, dim=1) | |
# Verify that the length is correct | |
assert tokens.size(1) == labels.size(1), f"{tokens.size(1)} != {labels.size(1)}" | |
data = {"tokens": tokens, "labels": labels} | |
return data | |
def pack_sentences( | |
self, | |
sentences: list[str], | |
semantics: list, | |
speaker: Optional[str] = None, | |
skip_text: bool = False, | |
): | |
if speaker is None: | |
speaker = "assistant" | |
cated_sentences = " ".join(sentences) | |
if skip_text: | |
cated_sentences = "<|skip_text|>" | |
final_text = "<|im_start|>user\n" + cated_sentences + "<|im_end|>" | |
final_text = final_text + f"<|im_start|>{speaker}\n" | |
encoded = self.tokenizer.encode( | |
final_text, | |
add_special_tokens=False, | |
truncation=False, | |
max_length=10**6, | |
) | |
semantic_length = sum([len(i[0].values) for i in semantics]) | |
prompt_length = len(encoded) | |
num_codebooks = ( | |
len(semantics[0]) if self.num_codebooks is None else self.num_codebooks | |
) | |
# Pack the tokens and semantics (add <s> and </s> to semantic tokens) | |
tokens = ( | |
encoded | |
+ [self.semantic_token_id] * semantic_length | |
+ self.tokenizer.convert_tokens_to_ids(["<|im_end|>"]) | |
) | |
# Codebook bos/padding: 0, eos: 1 | |
codes = [[CODEBOOK_PAD_TOKEN_ID] * prompt_length for _ in range(num_codebooks)] | |
for segment in semantics: | |
for book_idx, book in zip(range(num_codebooks), segment): | |
for j in book.values: | |
codes[book_idx].append(int(j) + 1) | |
for book in codes: | |
book.extend([CODEBOOK_PAD_TOKEN_ID] * 1) | |
tokens = [tokens] + codes | |
tokens = torch.tensor(tokens, dtype=torch.long) | |
labels = tokens.clone() | |
if skip_text: | |
# If text is not provided, the sentence is used for condition only, all labels are -100 | |
torch.fill_(labels, -100) | |
return tokens, labels | |
# Mask out the <s> tokens for semantic, predict semantic tokens only | |
# Since we don't mask out the input tokens, the language modeling still works | |
labels[1:, :prompt_length] = -100 | |
tokens = tokens[:, :-1] | |
labels = labels[:, 1:] | |
# Verify the padding is correct, and the last token is eos | |
assert (tokens[1:, :prompt_length] == CODEBOOK_PAD_TOKEN_ID).all() | |
assert (labels[1:, -1:] == CODEBOOK_PAD_TOKEN_ID).all() | |
return tokens, labels | |
class TextDataCollator: | |
tokenizer: AutoTokenizer | |
max_length: int = 1024 | |
def __call__(self, examples): | |
if "negative_tokens" in examples: | |
positive_examples = [] | |
negative_examples = [] | |
for i in examples: | |
positive_examples.append( | |
{ | |
"tokens": i["tokens"], | |
"labels": i["labels"], | |
} | |
) | |
negative_examples.append( | |
{ | |
"tokens": i["negative_tokens"], | |
"labels": i["negative_labels"], | |
} | |
) | |
examples = positive_examples + negative_examples | |
return self.batchify(examples) | |
def batchify(self, examples, tokens_key="tokens", labels_key="labels"): | |
tokens, attention_masks, labels = [], [], [] | |
# Calculate the max length | |
max_tokens_length = 0 | |
for example in examples: | |
max_tokens_length = max(max_tokens_length, example[tokens_key].size(1)) | |
max_tokens_length = min(max_tokens_length, self.max_length) | |
for example in examples: | |
_tokens = example[tokens_key][:, :max_tokens_length] | |
_labels = example[labels_key][:, :max_tokens_length] | |
_attention_mask = torch.ones((max_tokens_length,), dtype=torch.bool) | |
tokens_length = _tokens.size(1) | |
_attention_mask[:tokens_length] = False | |
assert tokens_length == _labels.size( | |
1 | |
), f"{tokens_length} != {_labels.size(1)}" | |
if tokens_length < max_tokens_length: | |
_tokens = F.pad( | |
_tokens, | |
(0, max_tokens_length - tokens_length), | |
value=self.tokenizer.eos_token_id, | |
) | |
_tokens[1:, tokens_length:] = CODEBOOK_PAD_TOKEN_ID | |
_labels = F.pad( | |
_labels, (0, max_tokens_length - _labels.size(1)), value=-100 | |
) | |
tokens.append(_tokens) | |
attention_masks.append(_attention_mask) | |
labels.append(_labels) | |
tokens = torch.stack(tokens, dim=0) | |
attention_masks = torch.stack(attention_masks, dim=0) | |
labels = torch.stack(labels, dim=0) | |
return { | |
"inputs": tokens, | |
"attention_masks": attention_masks, | |
"labels": labels, | |
} | |
class InterleaveDataset(IterableDataset): | |
def __init__( | |
self, | |
datasets: list[IterableDataset], | |
probabilities: list[float], | |
seed: int = 42, | |
): | |
super().__init__() | |
self.datasets = datasets | |
self.probabilities = probabilities | |
self.seed = seed | |
def __iter__(self): | |
rng = np.random.default_rng(self.seed) | |
dataset_iterators = [iter(dataset) for dataset in self.datasets] | |
while True: | |
# Random choice one | |
dataset_idx = rng.choice(len(self.datasets), p=self.probabilities) | |
dataset_iterator = dataset_iterators[dataset_idx] | |
try: | |
yield next(dataset_iterator) | |
except StopIteration: | |
# Exhausted, create a new iterator | |
dataset_iterators[dataset_idx] = iter(self.datasets[dataset_idx]) | |
yield next(dataset_iterators[dataset_idx]) | |
class SemanticDataModule(LightningDataModule): | |
def __init__( | |
self, | |
train_dataset: Union[AutoTextSemanticInstructionDataset, InterleaveDataset], | |
val_dataset: Union[AutoTextSemanticInstructionDataset, InterleaveDataset], | |
batch_size: int = 32, | |
tokenizer: AutoTokenizer = None, | |
max_length: int = 1024, | |
num_workers: int = 4, | |
): | |
super().__init__() | |
self.train_dataset = train_dataset | |
self.val_dataset = val_dataset | |
self.batch_size = batch_size | |
self.tokenizer = tokenizer | |
self.max_length = max_length | |
self.num_workers = num_workers | |
def train_dataloader(self): | |
return DataLoader( | |
self.train_dataset, | |
batch_size=self.batch_size, | |
collate_fn=TextDataCollator(self.tokenizer, self.max_length), | |
num_workers=self.num_workers, | |
persistent_workers=True, | |
) | |
def val_dataloader(self): | |
return DataLoader( | |
self.val_dataset, | |
batch_size=self.batch_size, | |
collate_fn=TextDataCollator(self.tokenizer, self.max_length), | |
num_workers=self.num_workers, | |
persistent_workers=True, | |
) | |
if __name__ == "__main__": | |
from tqdm import tqdm | |
ds = AutoTextSemanticInstructionDataset( | |
["data/protos"], | |
tokenizer=AutoTokenizer.from_pretrained("fishaudio/fish-speech-1"), | |
use_speaker=False, | |
interactive_prob=1.0, | |
skip_text_prob=0.5, | |
) | |
for i in ds: | |
print(ds.tokenizer.decode(i["tokens"][0], skip_special_tokens=False)) | |
# i["labels"][0][i["labels"][0] == -100] = 0 | |
# print(ds.tokenizer.decode(i["labels"][0], skip_special_tokens=False)) | |
break | |