Spaces:
No application file
No application file
import os | |
os.environ["USE_LIBUV"] = "0" | |
import sys | |
from typing import Optional | |
import hydra | |
import lightning as L | |
import pyrootutils | |
import torch | |
from lightning import Callback, LightningDataModule, LightningModule, Trainer | |
from lightning.pytorch.loggers import Logger | |
from lightning.pytorch.strategies import DDPStrategy | |
from omegaconf import DictConfig, OmegaConf | |
os.environ.pop("SLURM_NTASKS", None) | |
os.environ.pop("SLURM_JOB_NAME", None) | |
os.environ.pop("SLURM_NTASKS_PER_NODE", None) | |
# register eval resolver and root | |
pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True) | |
# Allow TF32 on Ampere GPUs | |
torch.set_float32_matmul_precision("high") | |
torch.backends.cudnn.allow_tf32 = True | |
# register eval resolver | |
OmegaConf.register_new_resolver("eval", eval) | |
import fish_speech.utils as utils | |
log = utils.RankedLogger(__name__, rank_zero_only=True) | |
def train(cfg: DictConfig) -> tuple[dict, dict]: | |
"""Trains the model. Can additionally evaluate on a testset, using best weights obtained during | |
training. | |
This method is wrapped in optional @task_wrapper decorator, that controls the behavior during | |
failure. Useful for multiruns, saving info about the crash, etc. | |
Args: | |
cfg (DictConfig): Configuration composed by Hydra. | |
Returns: | |
Tuple[dict, dict]: Dict with metrics and dict with all instantiated objects. | |
""" # noqa: E501 | |
# set seed for random number generators in pytorch, numpy and python.random | |
if cfg.get("seed"): | |
L.seed_everything(cfg.seed, workers=False) | |
if cfg.get("deterministic"): | |
torch.use_deterministic_algorithms(True) | |
log.info(f"Instantiating datamodule <{cfg.data._target_}>") | |
datamodule: LightningDataModule = hydra.utils.instantiate(cfg.data) | |
log.info(f"Instantiating model <{cfg.model._target_}>") | |
model: LightningModule = hydra.utils.instantiate(cfg.model) | |
log.info("Instantiating callbacks...") | |
callbacks: list[Callback] = utils.instantiate_callbacks(cfg.get("callbacks")) | |
log.info("Instantiating loggers...") | |
logger: list[Logger] = utils.instantiate_loggers(cfg.get("logger")) | |
log.info(f"Instantiating trainer <{cfg.trainer._target_}>") | |
trainer: Trainer = hydra.utils.instantiate( | |
cfg.trainer, | |
callbacks=callbacks, | |
logger=logger, | |
) | |
object_dict = { | |
"cfg": cfg, | |
"datamodule": datamodule, | |
"model": model, | |
"callbacks": callbacks, | |
"logger": logger, | |
"trainer": trainer, | |
} | |
if logger: | |
log.info("Logging hyperparameters!") | |
utils.log_hyperparameters(object_dict) | |
if cfg.get("train"): | |
log.info("Starting training!") | |
ckpt_path = cfg.get("ckpt_path") | |
auto_resume = False | |
resume_ckpt_path = utils.get_latest_checkpoint(cfg.paths.ckpt_dir) | |
if resume_ckpt_path is not None: | |
ckpt_path = resume_ckpt_path | |
auto_resume = True | |
if ckpt_path is not None: | |
log.info(f"Resuming from checkpoint: {ckpt_path}") | |
# resume weights only is disabled for auto-resume | |
if cfg.get("resume_weights_only") and auto_resume is False: | |
log.info("Resuming weights only!") | |
ckpt = torch.load(ckpt_path, map_location=model.device) | |
if "state_dict" in ckpt: | |
ckpt = ckpt["state_dict"] | |
err = model.load_state_dict(ckpt, strict=False) | |
log.info(f"Error loading state dict: {err}") | |
ckpt_path = None | |
trainer.fit(model=model, datamodule=datamodule, ckpt_path=ckpt_path) | |
train_metrics = trainer.callback_metrics | |
if cfg.get("test"): | |
log.info("Starting testing!") | |
ckpt_path = trainer.checkpoint_callback.best_model_path | |
if ckpt_path == "": | |
log.warning("Best ckpt not found! Using current weights for testing...") | |
ckpt_path = cfg.get("ckpt_path") | |
trainer.test(model=model, datamodule=datamodule, ckpt_path=ckpt_path) | |
log.info(f"Best ckpt path: {ckpt_path}") | |
test_metrics = trainer.callback_metrics | |
# merge train and test metrics | |
metric_dict = {**train_metrics, **test_metrics} | |
return metric_dict, object_dict | |
def main(cfg: DictConfig) -> Optional[float]: | |
# train the model | |
train(cfg) | |
if __name__ == "__main__": | |
main() | |