fishspeech2 / tools /sensevoice /auto_model.py
pineconeT94's picture
first commit
8b14bed
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import copy
import json
import logging
import os.path
import random
import re
import string
import time
import numpy as np
import torch
from funasr.download.download_model_from_hub import download_model
from funasr.download.file import download_from_url
from funasr.register import tables
from funasr.train_utils.load_pretrained_model import load_pretrained_model
from funasr.train_utils.set_all_random_seed import set_all_random_seed
from funasr.utils import export_utils, misc
from funasr.utils.load_utils import load_audio_text_image_video, load_bytes
from funasr.utils.misc import deep_update
from funasr.utils.timestamp_tools import timestamp_sentence, timestamp_sentence_en
from tqdm import tqdm
from .vad_utils import merge_vad, slice_padding_audio_samples
try:
from funasr.models.campplus.cluster_backend import ClusterBackend
from funasr.models.campplus.utils import distribute_spk, postprocess, sv_chunk
except:
pass
def prepare_data_iterator(data_in, input_len=None, data_type=None, key=None):
""" """
data_list = []
key_list = []
filelist = [".scp", ".txt", ".json", ".jsonl", ".text"]
chars = string.ascii_letters + string.digits
if isinstance(data_in, str):
if data_in.startswith("http://") or data_in.startswith("https://"): # url
data_in = download_from_url(data_in)
if isinstance(data_in, str) and os.path.exists(
data_in
): # wav_path; filelist: wav.scp, file.jsonl;text.txt;
_, file_extension = os.path.splitext(data_in)
file_extension = file_extension.lower()
if file_extension in filelist: # filelist: wav.scp, file.jsonl;text.txt;
with open(data_in, encoding="utf-8") as fin:
for line in fin:
key = "rand_key_" + "".join(random.choice(chars) for _ in range(13))
if data_in.endswith(
".jsonl"
): # file.jsonl: json.dumps({"source": data})
lines = json.loads(line.strip())
data = lines["source"]
key = data["key"] if "key" in data else key
else: # filelist, wav.scp, text.txt: id \t data or data
lines = line.strip().split(maxsplit=1)
data = lines[1] if len(lines) > 1 else lines[0]
key = lines[0] if len(lines) > 1 else key
data_list.append(data)
key_list.append(key)
else:
if key is None:
# key = "rand_key_" + "".join(random.choice(chars) for _ in range(13))
key = misc.extract_filename_without_extension(data_in)
data_list = [data_in]
key_list = [key]
elif isinstance(data_in, (list, tuple)):
if data_type is not None and isinstance(
data_type, (list, tuple)
): # mutiple inputs
data_list_tmp = []
for data_in_i, data_type_i in zip(data_in, data_type):
key_list, data_list_i = prepare_data_iterator(
data_in=data_in_i, data_type=data_type_i
)
data_list_tmp.append(data_list_i)
data_list = []
for item in zip(*data_list_tmp):
data_list.append(item)
else:
# [audio sample point, fbank, text]
data_list = data_in
key_list = []
for data_i in data_in:
if isinstance(data_i, str) and os.path.exists(data_i):
key = misc.extract_filename_without_extension(data_i)
else:
if key is None:
key = "rand_key_" + "".join(
random.choice(chars) for _ in range(13)
)
key_list.append(key)
else: # raw text; audio sample point, fbank; bytes
if isinstance(data_in, bytes): # audio bytes
data_in = load_bytes(data_in)
if key is None:
key = "rand_key_" + "".join(random.choice(chars) for _ in range(13))
data_list = [data_in]
key_list = [key]
return key_list, data_list
class AutoModel:
def __init__(self, **kwargs):
try:
from funasr.utils.version_checker import check_for_update
print(
"Check update of funasr, and it would cost few times. You may disable it by set `disable_update=True` in AutoModel"
)
check_for_update(disable=kwargs.get("disable_update", False))
except:
pass
log_level = getattr(logging, kwargs.get("log_level", "INFO").upper())
logging.basicConfig(level=log_level)
model, kwargs = self.build_model(**kwargs)
# if vad_model is not None, build vad model else None
vad_model = kwargs.get("vad_model", None)
vad_kwargs = (
{} if kwargs.get("vad_kwargs", {}) is None else kwargs.get("vad_kwargs", {})
)
if vad_model is not None:
logging.info("Building VAD model.")
vad_kwargs["model"] = vad_model
vad_kwargs["model_revision"] = kwargs.get("vad_model_revision", "master")
vad_kwargs["device"] = kwargs["device"]
vad_model, vad_kwargs = self.build_model(**vad_kwargs)
# if punc_model is not None, build punc model else None
punc_model = kwargs.get("punc_model", None)
punc_kwargs = (
{}
if kwargs.get("punc_kwargs", {}) is None
else kwargs.get("punc_kwargs", {})
)
if punc_model is not None:
logging.info("Building punc model.")
punc_kwargs["model"] = punc_model
punc_kwargs["model_revision"] = kwargs.get("punc_model_revision", "master")
punc_kwargs["device"] = kwargs["device"]
punc_model, punc_kwargs = self.build_model(**punc_kwargs)
# if spk_model is not None, build spk model else None
spk_model = kwargs.get("spk_model", None)
spk_kwargs = (
{} if kwargs.get("spk_kwargs", {}) is None else kwargs.get("spk_kwargs", {})
)
if spk_model is not None:
logging.info("Building SPK model.")
spk_kwargs["model"] = spk_model
spk_kwargs["model_revision"] = kwargs.get("spk_model_revision", "master")
spk_kwargs["device"] = kwargs["device"]
spk_model, spk_kwargs = self.build_model(**spk_kwargs)
self.cb_model = ClusterBackend().to(kwargs["device"])
spk_mode = kwargs.get("spk_mode", "punc_segment")
if spk_mode not in ["default", "vad_segment", "punc_segment"]:
logging.error(
"spk_mode should be one of default, vad_segment and punc_segment."
)
self.spk_mode = spk_mode
self.kwargs = kwargs
self.model = model
self.vad_model = vad_model
self.vad_kwargs = vad_kwargs
self.punc_model = punc_model
self.punc_kwargs = punc_kwargs
self.spk_model = spk_model
self.spk_kwargs = spk_kwargs
self.model_path = kwargs.get("model_path")
@staticmethod
def build_model(**kwargs):
assert "model" in kwargs
if "model_conf" not in kwargs:
logging.info(
"download models from model hub: {}".format(kwargs.get("hub", "ms"))
)
kwargs = download_model(**kwargs)
set_all_random_seed(kwargs.get("seed", 0))
device = kwargs.get("device", "cuda")
if not torch.cuda.is_available() or kwargs.get("ngpu", 1) == 0:
device = "cpu"
kwargs["batch_size"] = 1
kwargs["device"] = device
torch.set_num_threads(kwargs.get("ncpu", 4))
# build tokenizer
tokenizer = kwargs.get("tokenizer", None)
if tokenizer is not None:
tokenizer_class = tables.tokenizer_classes.get(tokenizer)
tokenizer = tokenizer_class(**kwargs.get("tokenizer_conf", {}))
kwargs["token_list"] = (
tokenizer.token_list if hasattr(tokenizer, "token_list") else None
)
kwargs["token_list"] = (
tokenizer.get_vocab()
if hasattr(tokenizer, "get_vocab")
else kwargs["token_list"]
)
vocab_size = (
len(kwargs["token_list"]) if kwargs["token_list"] is not None else -1
)
if vocab_size == -1 and hasattr(tokenizer, "get_vocab_size"):
vocab_size = tokenizer.get_vocab_size()
else:
vocab_size = -1
kwargs["tokenizer"] = tokenizer
# build frontend
frontend = kwargs.get("frontend", None)
kwargs["input_size"] = None
if frontend is not None:
frontend_class = tables.frontend_classes.get(frontend)
frontend = frontend_class(**kwargs.get("frontend_conf", {}))
kwargs["input_size"] = (
frontend.output_size() if hasattr(frontend, "output_size") else None
)
kwargs["frontend"] = frontend
# build model
model_class = tables.model_classes.get(kwargs["model"])
assert model_class is not None, f'{kwargs["model"]} is not registered'
model_conf = {}
deep_update(model_conf, kwargs.get("model_conf", {}))
deep_update(model_conf, kwargs)
model = model_class(**model_conf, vocab_size=vocab_size)
# init_param
init_param = kwargs.get("init_param", None)
if init_param is not None:
if os.path.exists(init_param):
logging.info(f"Loading pretrained params from {init_param}")
load_pretrained_model(
model=model,
path=init_param,
ignore_init_mismatch=kwargs.get("ignore_init_mismatch", True),
oss_bucket=kwargs.get("oss_bucket", None),
scope_map=kwargs.get("scope_map", []),
excludes=kwargs.get("excludes", None),
)
else:
print(f"error, init_param does not exist!: {init_param}")
# fp16
if kwargs.get("fp16", False):
model.to(torch.float16)
elif kwargs.get("bf16", False):
model.to(torch.bfloat16)
model.to(device)
if not kwargs.get("disable_log", True):
tables.print()
return model, kwargs
def __call__(self, *args, **cfg):
kwargs = self.kwargs
deep_update(kwargs, cfg)
res = self.model(*args, kwargs)
return res
def generate(self, input, input_len=None, **cfg):
if self.vad_model is None:
return self.inference(input, input_len=input_len, **cfg)
else:
return self.inference_with_vad(input, input_len=input_len, **cfg)
def inference(
self, input, input_len=None, model=None, kwargs=None, key=None, **cfg
):
kwargs = self.kwargs if kwargs is None else kwargs
if "cache" in kwargs:
kwargs.pop("cache")
deep_update(kwargs, cfg)
model = self.model if model is None else model
model.eval()
batch_size = kwargs.get("batch_size", 1)
# if kwargs.get("device", "cpu") == "cpu":
# batch_size = 1
key_list, data_list = prepare_data_iterator(
input, input_len=input_len, data_type=kwargs.get("data_type", None), key=key
)
speed_stats = {}
asr_result_list = []
num_samples = len(data_list)
disable_pbar = self.kwargs.get("disable_pbar", False)
pbar = (
tqdm(colour="blue", total=num_samples, dynamic_ncols=True)
if not disable_pbar
else None
)
time_speech_total = 0.0
time_escape_total = 0.0
for beg_idx in range(0, num_samples, batch_size):
end_idx = min(num_samples, beg_idx + batch_size)
data_batch = data_list[beg_idx:end_idx]
key_batch = key_list[beg_idx:end_idx]
batch = {"data_in": data_batch, "key": key_batch}
if (end_idx - beg_idx) == 1 and kwargs.get(
"data_type", None
) == "fbank": # fbank
batch["data_in"] = data_batch[0]
batch["data_lengths"] = input_len
time1 = time.perf_counter()
with torch.no_grad():
res = model.inference(**batch, **kwargs)
if isinstance(res, (list, tuple)):
results = res[0] if len(res) > 0 else [{"text": ""}]
meta_data = res[1] if len(res) > 1 else {}
time2 = time.perf_counter()
asr_result_list.extend(results)
# batch_data_time = time_per_frame_s * data_batch_i["speech_lengths"].sum().item()
batch_data_time = meta_data.get("batch_data_time", -1)
time_escape = time2 - time1
speed_stats["load_data"] = meta_data.get("load_data", 0.0)
speed_stats["extract_feat"] = meta_data.get("extract_feat", 0.0)
speed_stats["forward"] = f"{time_escape:0.3f}"
speed_stats["batch_size"] = f"{len(results)}"
speed_stats["rtf"] = f"{(time_escape) / batch_data_time:0.3f}"
description = f"{speed_stats}, "
if pbar:
pbar.update(end_idx - beg_idx)
pbar.set_description(description)
time_speech_total += batch_data_time
time_escape_total += time_escape
if pbar:
# pbar.update(1)
pbar.set_description(f"rtf_avg: {time_escape_total/time_speech_total:0.3f}")
torch.cuda.empty_cache()
return asr_result_list
def vad(self, input, input_len=None, **cfg):
kwargs = self.kwargs
# step.1: compute the vad model
deep_update(self.vad_kwargs, cfg)
beg_vad = time.time()
res = self.inference(
input,
input_len=input_len,
model=self.vad_model,
kwargs=self.vad_kwargs,
**cfg,
)
end_vad = time.time()
# FIX(gcf): concat the vad clips for sense vocie model for better aed
if cfg.get("merge_vad", False):
for i in range(len(res)):
res[i]["value"] = merge_vad(
res[i]["value"], kwargs.get("merge_length_s", 15) * 1000
)
elapsed = end_vad - beg_vad
return elapsed, res
def inference_with_vadres(self, input, vad_res, input_len=None, **cfg):
kwargs = self.kwargs
# step.2 compute asr model
model = self.model
deep_update(kwargs, cfg)
batch_size = max(int(kwargs.get("batch_size_s", 300)) * 1000, 1)
batch_size_threshold_ms = int(kwargs.get("batch_size_threshold_s", 60)) * 1000
kwargs["batch_size"] = batch_size
key_list, data_list = prepare_data_iterator(
input, input_len=input_len, data_type=kwargs.get("data_type", None)
)
results_ret_list = []
time_speech_total_all_samples = 1e-6
beg_total = time.time()
pbar_total = (
tqdm(colour="red", total=len(vad_res), dynamic_ncols=True)
if not kwargs.get("disable_pbar", False)
else None
)
for i in range(len(vad_res)):
key = vad_res[i]["key"]
vadsegments = vad_res[i]["value"]
input_i = data_list[i]
fs = kwargs["frontend"].fs if hasattr(kwargs["frontend"], "fs") else 16000
speech = load_audio_text_image_video(
input_i, fs=fs, audio_fs=kwargs.get("fs", 16000)
)
speech_lengths = len(speech)
n = len(vadsegments)
data_with_index = [(vadsegments[i], i) for i in range(n)]
sorted_data = sorted(data_with_index, key=lambda x: x[0][1] - x[0][0])
results_sorted = []
if not len(sorted_data):
results_ret_list.append({"key": key, "text": "", "timestamp": []})
logging.info("decoding, utt: {}, empty speech".format(key))
continue
if len(sorted_data) > 0 and len(sorted_data[0]) > 0:
batch_size = max(
batch_size, sorted_data[0][0][1] - sorted_data[0][0][0]
)
if kwargs["device"] == "cpu":
batch_size = 0
beg_idx = 0
beg_asr_total = time.time()
time_speech_total_per_sample = speech_lengths / 16000
time_speech_total_all_samples += time_speech_total_per_sample
# pbar_sample = tqdm(colour="blue", total=n, dynamic_ncols=True)
all_segments = []
max_len_in_batch = 0
end_idx = 1
for j, _ in enumerate(range(0, n)):
# pbar_sample.update(1)
sample_length = sorted_data[j][0][1] - sorted_data[j][0][0]
potential_batch_length = max(max_len_in_batch, sample_length) * (
j + 1 - beg_idx
)
# batch_size_ms_cum += sorted_data[j][0][1] - sorted_data[j][0][0]
if (
j < n - 1
and sample_length < batch_size_threshold_ms
and potential_batch_length < batch_size
):
max_len_in_batch = max(max_len_in_batch, sample_length)
end_idx += 1
continue
speech_j, speech_lengths_j, intervals = slice_padding_audio_samples(
speech, speech_lengths, sorted_data[beg_idx:end_idx]
)
results = self.inference(
speech_j, input_len=None, model=model, kwargs=kwargs, **cfg
)
for _b in range(len(speech_j)):
results[_b]["interval"] = intervals[_b]
if self.spk_model is not None:
# compose vad segments: [[start_time_sec, end_time_sec, speech], [...]]
for _b in range(len(speech_j)):
vad_segments = [
[
sorted_data[beg_idx:end_idx][_b][0][0] / 1000.0,
sorted_data[beg_idx:end_idx][_b][0][1] / 1000.0,
np.array(speech_j[_b]),
]
]
segments = sv_chunk(vad_segments)
all_segments.extend(segments)
speech_b = [i[2] for i in segments]
spk_res = self.inference(
speech_b,
input_len=None,
model=self.spk_model,
kwargs=kwargs,
**cfg,
)
results[_b]["spk_embedding"] = spk_res[0]["spk_embedding"]
beg_idx = end_idx
end_idx += 1
max_len_in_batch = sample_length
if len(results) < 1:
continue
results_sorted.extend(results)
# end_asr_total = time.time()
# time_escape_total_per_sample = end_asr_total - beg_asr_total
# pbar_sample.update(1)
# pbar_sample.set_description(f"rtf_avg_per_sample: {time_escape_total_per_sample / time_speech_total_per_sample:0.3f}, "
# f"time_speech_total_per_sample: {time_speech_total_per_sample: 0.3f}, "
# f"time_escape_total_per_sample: {time_escape_total_per_sample:0.3f}")
restored_data = [0] * n
for j in range(n):
index = sorted_data[j][1]
cur = results_sorted[j]
pattern = r"<\|([^|]+)\|>"
emotion_string = re.findall(pattern, cur["text"])
cur["text"] = re.sub(pattern, "", cur["text"])
cur["emo"] = "".join([f"<|{t}|>" for t in emotion_string])
if self.punc_model is not None and len(cur["text"].strip()) > 0:
deep_update(self.punc_kwargs, cfg)
punc_res = self.inference(
cur["text"],
model=self.punc_model,
kwargs=self.punc_kwargs,
**cfg,
)
cur["text"] = punc_res[0]["text"]
restored_data[index] = cur
end_asr_total = time.time()
time_escape_total_per_sample = end_asr_total - beg_asr_total
if pbar_total:
pbar_total.update(1)
pbar_total.set_description(
f"rtf_avg: {time_escape_total_per_sample / time_speech_total_per_sample:0.3f}, "
f"time_speech: {time_speech_total_per_sample: 0.3f}, "
f"time_escape: {time_escape_total_per_sample:0.3f}"
)
# end_total = time.time()
# time_escape_total_all_samples = end_total - beg_total
# print(f"rtf_avg_all: {time_escape_total_all_samples / time_speech_total_all_samples:0.3f}, "
# f"time_speech_all: {time_speech_total_all_samples: 0.3f}, "
# f"time_escape_all: {time_escape_total_all_samples:0.3f}")
return restored_data
def export(self, input=None, **cfg):
"""
:param input:
:param type:
:param quantize:
:param fallback_num:
:param calib_num:
:param opset_version:
:param cfg:
:return:
"""
device = cfg.get("device", "cpu")
model = self.model.to(device=device)
kwargs = self.kwargs
deep_update(kwargs, cfg)
kwargs["device"] = device
del kwargs["model"]
model.eval()
type = kwargs.get("type", "onnx")
key_list, data_list = prepare_data_iterator(
input, input_len=None, data_type=kwargs.get("data_type", None), key=None
)
with torch.no_grad():
export_dir = export_utils.export(model=model, data_in=data_list, **kwargs)
return export_dir