# 파인튜닝 이 페이지를 열었다는 것은, 사전 학습된 퓨샷(Few-shot) 모델의 성능에 만족하지 못했다는 의미일 것입니다. 데이터셋의 성능을 향상시키기 위해 모델을 파인튜닝하고 싶으시겠죠. 현재 버전에서는 'LLAMA' 부분만 파인튜닝하시면 됩니다. ## LLAMA 파인튜닝 ### 1. 데이터셋 준비 ``` . ├── SPK1 │ ├── 21.15-26.44.lab │ ├── 21.15-26.44.mp3 │ ├── 27.51-29.98.lab │ ├── 27.51-29.98.mp3 │ ├── 30.1-32.71.lab │ └── 30.1-32.71.mp3 └── SPK2 ├── 38.79-40.85.lab └── 38.79-40.85.mp3 ``` 위와 같은 형식으로 데이터셋을 변환하여 `data` 디렉토리 안에 배치하세요. 오디오 파일의 확장자는 `.mp3`, `.wav`, `.flac` 중 하나여야 하며, 주석 파일은 `.lab` 확장자를 사용해야 합니다. !!! info "데이터셋 형식" `.lab` 주석 파일은 오디오의 전사 내용만 포함하면 되며, 특별한 형식이 필요하지 않습니다. 예를 들어, `hi.mp3`에서 "Hello, goodbye"라는 대사를 말한다면, `hi.lab` 파일에는 "Hello, goodbye"라는 한 줄의 텍스트만 있어야 합니다. !!! warning 데이터셋에 대한 음량 정규화(loudness normalization)를 적용하는 것이 좋습니다. 이를 위해 [fish-audio-preprocess](https://github.com/fishaudio/audio-preprocess)를 사용할 수 있습니다. ```bash fap loudness-norm data-raw data --clean ``` ### 2. 시맨틱 토큰 배치 추출 VQGAN 가중치를 다운로드했는지 확인하세요. 다운로드하지 않았다면 아래 명령어를 실행하세요: ```bash huggingface-cli download fishaudio/fish-speech-1.4 --local-dir checkpoints/fish-speech-1.4 ``` 이후 시맨틱 토큰을 추출하기 위해 아래 명령어를 실행하세요: ```bash python tools/vqgan/extract_vq.py data \ --num-workers 1 --batch-size 16 \ --config-name "firefly_gan_vq" \ --checkpoint-path "checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth" ``` !!! note 추출 속도를 높이기 위해 `--num-workers`와 `--batch-size` 값을 조정할 수 있지만, GPU 메모리 한도를 초과하지 않도록 주의하세요. VITS 형식의 경우, `--filelist xxx.list`를 사용하여 파일 목록을 지정할 수 있습니다. 이 명령을 실행하면 `data` 디렉토리 안에 `.npy` 파일이 생성됩니다. 다음과 같이 표시됩니다: ``` . ├── SPK1 │ ├── 21.15-26.44.lab │ ├── 21.15-26.44.mp3 │ ├── 21.15-26.44.npy │ ├── 27.51-29.98.lab │ ├── 27.51-29.98.mp3 │ ├── 27.51-29.98.npy │ ├── 30.1-32.71.lab │ ├── 30.1-32.71.mp3 │ └── 30.1-32.71.npy └── SPK2 ├── 38.79-40.85.lab ├── 38.79-40.85.mp3 └── 38.79-40.85.npy ``` ### 3. 데이터셋을 protobuf로 패킹 ```bash python tools/llama/build_dataset.py \ --input "data" \ --output "data/protos" \ --text-extension .lab \ --num-workers 16 ``` 명령이 완료되면 `data` 디렉토리 안에 `quantized-dataset-ft.protos` 파일이 생성됩니다. ### 4. 마지막으로, LoRA를 이용한 파인튜닝 마찬가지로, `LLAMA` 가중치를 다운로드했는지 확인하세요. 다운로드하지 않았다면 아래 명령어를 실행하세요: ```bash huggingface-cli download fishaudio/fish-speech-1.4 --local-dir checkpoints/fish-speech-1.4 ``` 마지막으로, 아래 명령어를 실행하여 파인튜닝을 시작할 수 있습니다: ```bash python fish_speech/train.py --config-name text2semantic_finetune \ project=$project \ +lora@model.model.lora_config=r_8_alpha_16 ``` !!! note `batch_size`, `gradient_accumulation_steps` 등의 학습 매개변수를 GPU 메모리에 맞게 조정하려면 `fish_speech/configs/text2semantic_finetune.yaml` 파일을 수정할 수 있습니다. !!! note Windows 사용자의 경우, `nccl` 문제를 피하려면 `trainer.strategy.process_group_backend=gloo`를 사용할 수 있습니다. 훈련이 완료되면 [추론](inference.md) 섹션을 참고하여 음성을 생성할 수 있습니다. !!! info 기본적으로 모델은 화자의 말하는 패턴만 학습하고 음색은 학습하지 않습니다. 음색의 안정성을 위해 프롬프트를 사용해야 합니다. 음색을 학습하려면 훈련 단계를 늘릴 수 있지만, 이는 과적합의 위험을 초래할 수 있습니다. 훈련이 끝나면 LoRA 가중치를 일반 가중치로 변환한 후에 추론을 수행해야 합니다. ```bash python tools/llama/merge_lora.py \ --lora-config r_8_alpha_16 \ --base-weight checkpoints/fish-speech-1.4 \ --lora-weight results/$project/checkpoints/step_000000010.ckpt \ --output checkpoints/fish-speech-1.4-yth-lora/ ``` !!! note 다른 체크포인트도 시도해 볼 수 있습니다. 요구 사항에 맞는 가장 초기 체크포인트를 사용하는 것이 좋습니다. 이들은 종종 분포 밖(OOD) 데이터에서 더 좋은 성능을 발휘합니다.