Spaces:
Running
on
Zero
Running
on
Zero
Advik
commited on
Commit
·
10078f3
1
Parent(s):
1c1e204
pickling errors (pls fix)
Browse files- app.py +1 -1
- software.py +33 -10
app.py
CHANGED
@@ -51,7 +51,7 @@ def detect_ai_text(text):
|
|
51 |
return message, round(ai_prob, 3), bar_data
|
52 |
|
53 |
# Gradio app setup
|
54 |
-
with gr.Blocks(title="DivEye"
|
55 |
gr.HTML("""
|
56 |
<div style="display: flex; justify-content: space-between; align-items: center; padding: 1.5rem; background: #f0f4f8; border-radius: 12px; margin-bottom: 1rem;">
|
57 |
<div style="text-align: left; max-width: 70%;">
|
|
|
51 |
return message, round(ai_prob, 3), bar_data
|
52 |
|
53 |
# Gradio app setup
|
54 |
+
with gr.Blocks(title="DivEye") as demo:
|
55 |
gr.HTML("""
|
56 |
<div style="display: flex; justify-content: space-between; align-items: center; padding: 1.5rem; background: #f0f4f8; border-radius: 12px; margin-bottom: 1rem;">
|
57 |
<div style="text-align: left; max-width: 70%;">
|
software.py
CHANGED
@@ -99,22 +99,42 @@ class BiScope:
|
|
99 |
class Software:
|
100 |
def __init__(self):
|
101 |
self.token = os.getenv("HF_TOKEN")
|
|
|
|
|
102 |
|
103 |
-
self.
|
104 |
-
self.
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
self.bi_tokenizer = AutoTokenizer.from_pretrained("google/gemma-1.1-2b-it", use_fast=False, trust_remote_code=True, use_auth_token=self.token)
|
109 |
-
self.bi_model = AutoModelForCausalLM.from_pretrained(
|
110 |
-
"google/gemma-1.1-2b-it", torch_dtype=torch.float16, trust_remote_code=True, use_auth_token=self.token
|
111 |
-
)
|
112 |
-
|
113 |
|
114 |
self.model_path = Path(__file__).parent / "model.json"
|
115 |
|
116 |
self.model = xgb.XGBClassifier()
|
117 |
self.model.load_model(self.model_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
def load_data(self, jsonl_path):
|
120 |
ids, texts = [], []
|
@@ -127,6 +147,9 @@ class Software:
|
|
127 |
|
128 |
@spaces.GPU
|
129 |
def evaluate(self, text):
|
|
|
|
|
|
|
130 |
# Load models to GPUs.
|
131 |
device_div = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
132 |
if torch.cuda.device_count() > 1:
|
|
|
99 |
class Software:
|
100 |
def __init__(self):
|
101 |
self.token = os.getenv("HF_TOKEN")
|
102 |
+
self.device_div = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
103 |
+
self.device_bi = self.device_div
|
104 |
|
105 |
+
self.div_model = None
|
106 |
+
self.div_tokenizer = None
|
107 |
+
self.bi_model = None
|
108 |
+
self.bi_tokenizer = None
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
self.model_path = Path(__file__).parent / "model.json"
|
111 |
|
112 |
self.model = xgb.XGBClassifier()
|
113 |
self.model.load_model(self.model_path)
|
114 |
+
|
115 |
+
def _load_div_models(self):
|
116 |
+
if self.div_model is None or self.div_tokenizer is None:
|
117 |
+
self.div_tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b", use_fast=False, trust_remote_code=True, use_auth_token=self.token)
|
118 |
+
self.div_model = AutoModelForCausalLM.from_pretrained(
|
119 |
+
"tiiuae/falcon-7b",
|
120 |
+
device_map="cuda",
|
121 |
+
torch_dtype=torch.float16,
|
122 |
+
trust_remote_code=True,
|
123 |
+
use_auth_token=self.token
|
124 |
+
)
|
125 |
+
self.div_model.to(self.device_div)
|
126 |
+
|
127 |
+
def _load_bi_models(self):
|
128 |
+
if self.bi_model is None or self.bi_tokenizer is None:
|
129 |
+
self.bi_tokenizer = AutoTokenizer.from_pretrained("google/gemma-1.1-2b-it", use_fast=False, trust_remote_code=True, use_auth_token=self.token)
|
130 |
+
self.bi_model = AutoModelForCausalLM.from_pretrained(
|
131 |
+
"google/gemma-1.1-2b-it",
|
132 |
+
device_map="cuda",
|
133 |
+
torch_dtype=torch.float16,
|
134 |
+
trust_remote_code=True,
|
135 |
+
use_auth_token=self.token
|
136 |
+
)
|
137 |
+
self.bi_model.to(self.device_bi)
|
138 |
|
139 |
def load_data(self, jsonl_path):
|
140 |
ids, texts = [], []
|
|
|
147 |
|
148 |
@spaces.GPU
|
149 |
def evaluate(self, text):
|
150 |
+
self._load_div_models()
|
151 |
+
self._load_bi_models()
|
152 |
+
|
153 |
# Load models to GPUs.
|
154 |
device_div = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
155 |
if torch.cuda.device_count() > 1:
|