pmiguel commited on
Commit
c646de1
1 Parent(s): 6f4ef04

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -6
README.md CHANGED
@@ -13,19 +13,16 @@ pinned: false
13
 
14
  ## Who we are?
15
 
16
- Somos un equipo multidisciplinario de la Universidad de Buenos Aires, formado por expertos en diversas 谩reas como la sociolog铆a, el derecho y las ciencias de la computaci贸n. Trabajamos de manera conjunta para entender y combatir el discurso de odio.
17
-
18
  We are a multidisciplinary team from the Universitad de Buenos Aires. We are experts in various areas such as sociology, law and computer science.
19
 
20
 
21
  ## What we do?
22
 
23
- Nuestro proyecto se enfoca en estudiar el discurso de odio en las redes sociales y su relaci贸n con la marginaci贸n social.
24
 
25
- Utilizamos un enfoque interdisciplinario que combina la investigaci贸n cuantitativa y cualitativa para analizar el discurso de odio en redes sociales, y particularmente en el desarrollo de pandemias como el COVID-19. Desarrollamos herramientas y estrategias para combatir el discurso de odio.
26
 
27
- Our research aims to study and implement methodologies for the study of social exclusions by applying an interdisciplinary approach and research techniques, focused on the analysis of large volumes of data.
28
- We mainly working on textual sources, using different techniques and strategies from artificial intelligence, such as text mining and natural language processing (NLP) and machine learning, including deep neural networks (deep learning), multivariate statistical methods and data visualization.
29
 
30
  ## Published Work
31
 
 
13
 
14
  ## Who we are?
15
 
 
 
16
  We are a multidisciplinary team from the Universitad de Buenos Aires. We are experts in various areas such as sociology, law and computer science.
17
 
18
 
19
  ## What we do?
20
 
21
+ Our research aims to study and implement methodologies for the study of social exclusions, from an interdisciplinary approach, by applying research techniques focused on the analysis of large volumes of data.
22
 
23
+ We mainly work on textual sources, using different techniques and strategies from artificial intelligence, such as text mining and natural language processing (NLP) and machine learning, including deep neural networks (deep learning), multivariate statistical methods and data visualization.
24
 
25
+ Here we are pleased to present results of a study on hate speech detection in social networks, from an interdisciplinary perspective, addressing hate speech both quantitative and qualitatively, in the time frame of COVID-19 pandemic.
 
26
 
27
  ## Published Work
28