Spaces:
Sleeping
Sleeping
File size: 13,346 Bytes
e613cea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
from ipywidgets import widgets
import copy
import json
import glob
import os
import time
import threading
from IPython.display import Audio, display, HTML, FileLink
from pathlib import Path
import subprocess
import shutil
from google.colab import files
from ipywidgets import TwoByTwoLayout
import re
SEGMENT_LENGTH = 60
CUSTOM_MODELS_FILENAME = "customModels"
CUSTOM_MODELS_DIR = f"/drive/MyDrive/{CUSTOM_MODELS_FILENAME}"
MUSIC_EXTENSIONS = ['.mp3', '.wav', '.flac', '.aac', '.ogg']
SEGMENTS_DIRNAME = f"/content/segments"
INFERENCE_OUTPUT_DIRNAME = "/content/inference_output"
def progress(value, max=100):
return HTML("""
<progress
value='{value}'
max='{max}',
style='width: 100%'
>
{value}
</progress>
""".format(value=value, max=max))
def is_valid_filename(filename):
if re.search(r'[<>:"/\\|?*\x00-\x1f]', filename):
return False
if re.search(r'[-\s()]', filename):
return False
return True
def clean_filename(filename):
basename = os.path.basename(filename)
cleaned_basename = re.sub(r'[%<>:"/\\|?*\x00-\x1f]', '', basename)
cleaned_basename = re.sub(r'[-\s]+', '_', cleaned_basename)
cleaned_basename = re.sub(r'[\(\)]+', '', cleaned_basename)
cleaned_basename = cleaned_basename.replace("'", "").replace('"', '').replace("$", "")
cleaned_basename_arr = cleaned_basename.split()
for i in range(len(cleaned_basename_arr)):
if i != len(cleaned_basename_arr)-1:
cleaned_basename_arr[i] = cleaned_basename_arr[i].replace(".", "")
cleaned_basename = " ".join(cleaned_basename_arr)
return os.path.join(os.path.dirname(filename), cleaned_basename)
def get_audio_files():
audio_files = []
for root, dirs, files in os.walk("/content"):
for filename in files:
file_extension = os.path.splitext(filename)[1]
if file_extension.lower() in MUSIC_EXTENSIONS and "output" not in filename:
audio_files.append(filename)
return audio_files
def get_speakers():
speakers = []
for _,dirs,_ in os.walk(CUSTOM_MODELS_DIR):
for folder in dirs:
cur_speaker = {}
# Look for G_****.pth
g = glob.glob(os.path.join(CUSTOM_MODELS_DIR,folder,'G_*.pth'))
if not len(g):
continue
cur_speaker["model_path"] = g[0]
cur_speaker["model_folder"] = folder
# Look for *.pt (clustering model)
clst = glob.glob(os.path.join(CUSTOM_MODELS_DIR,folder,'*.pt'))
if not len(clst):
cur_speaker["cluster_path"] = ""
else:
cur_speaker["cluster_path"] = clst[0]
# Look for config.json
cfg = glob.glob(os.path.join(CUSTOM_MODELS_DIR,folder,'*.json'))
if not len(cfg):
continue
cur_speaker["cfg_path"] = cfg[0]
with open(cur_speaker["cfg_path"]) as f:
try:
cfg_json = json.loads(f.read())
except Exception as e:
print("Malformed config json in "+folder)
for name, i in cfg_json["spk"].items():
cur_speaker["name"] = name
cur_speaker["id"] = i
if not name.startswith('.'):
speakers.append(copy.copy(cur_speaker))
return sorted(speakers, key=lambda x:x["name"].lower())
def slice_audio(filepath):
assert os.path.exists(filepath), f"Не удалось найти {filepath}. Убедитесь, что вы ввели правильное имя файла."
# Get the filename and extension of the input file
filename, extension = os.path.splitext(filepath)
filename = filename.split("/")[-1]
os.makedirs(SEGMENTS_DIRNAME, exist_ok=True)
# Set the output filename pattern
output_pattern = f"{SEGMENTS_DIRNAME}/{filename}_%d{extension}"
# Use ffmpeg to split the audio into segments
os.system(f"ffmpeg -i {filepath} -f segment -segment_time {SEGMENT_LENGTH} -c copy {output_pattern}")
def get_container_format(filename):
command = ["ffprobe", "-v", "error", "-select_streams", "v:0", "-show_entries", "format=format_name", "-of", "default=noprint_wrappers=1:nokey=1", filename]
process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
output, error = process.communicate()
if error:
raise ValueError(f"Ошибка при получении формата контейнера: {error.decode()}")
return output.decode().strip()
def run_inference(speaker, f0_method, transpose, noise_scale, cluster_ratio, is_pitch_prediction_enabled):
loading_bar = display(progress(0, 100), display_id=True)
model_path = speaker["model_path"]
config_path = speaker["cfg_path"]
cluster_path = speaker["cluster_path"]
all_segs_paths = sorted(Path(SEGMENTS_DIRNAME).glob("*"))
for index, seg_path in enumerate(all_segs_paths):
max_load_value = float((index + 1)/len(all_segs_paths)) * 100
loading_bar.update(progress(max_load_value / 2, 100))
inference_cmd = f"svc infer {seg_path.absolute()} -m {model_path} -c {config_path} {f'-k {cluster_path} -r {cluster_ratio}' if cluster_path != '' and cluster_ratio > 0 else ''} -t {transpose} --f0-method {f0_method} -n {noise_scale} -o {INFERENCE_OUTPUT_DIRNAME}/{seg_path.name} {'' if is_pitch_prediction_enabled else '--no-auto-predict-f0'}"
# print(f"\nPerforming inference on... {seg_path.absolute()}\ninference cmd: {inference_cmd}")
result = subprocess.run(
inference_cmd.split(),
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True
)
loading_bar.update(progress(max_load_value, 100))
if result.stderr:
if "AttributeError" in result.stderr:
raise Exception(result.stderr + "Убедитесь, что ваша модель не 4.0-v2. Этот блокнот работает только на моделях 4.0-v1.")
files_length = len(sorted(Path(SEGMENTS_DIRNAME).glob("*")))
if files_length == 0:
raise Exception("Произошла неизвестная ошибка!")
def concatenate_segments(final_filename):
foldername = Path(INFERENCE_OUTPUT_DIRNAME)
assert foldername.exists(), "папка не существует. Введите правильное имя папки"
all_segs = [f for f in sorted(foldername.glob("**/*")) if f.is_file()]
print(all_segs)
try:
ext = all_segs[0].suffix
with open(foldername/"concat_list.txt", "w") as f:
for seg in all_segs:
f.write('file ' + str(seg.absolute()) + "\n")
os.system(f"ffmpeg -f concat -safe 0 -i {foldername}/concat_list.txt -codec copy {foldername}/{final_filename}")
except:
raise Exception(f'В каталоге {foldername} не найдено ни одного файла')
def cleanup_dirs():
!rm -R {INFERENCE_OUTPUT_DIRNAME} &> /dev/null
!rm -R {SEGMENTS_DIRNAME} &> /dev/null
!rm -R ./so_vits_svc_fork.log &> /dev/null
class InferenceGui():
def __init__(self):
# Initialize the background watcher thread as None
speakers = get_speakers()
self.is_inferencing = False
self.final_filename = ""
self.speakers = speakers if speakers is not None else []
self.speaker_list = [x["name"] for x in self.speakers]
self.speaker_dropdown = widgets.Dropdown(
options = self.speaker_list,
description="AI модель"
)
self.audio_files = get_audio_files()
self.audio_files_dropdown = widgets.Dropdown(
options = self.audio_files,
description="Аудиофайл"
)
self.cluster_ratio_tx = widgets.FloatSlider(
value=1,
min=0,
max=1.0,
step=0.05,
description='Соотношение кластеров',
disabled=False,
continuous_update=False,
orientation='horizontal',
readout=True,
)
self.noise_scale_tx = widgets.FloatSlider(
value=2,
min=-2,
max=2,
step=.4,
description='Шкала шума',
disabled=False,
continuous_update=False,
orientation='horizontal',
readout=True,
)
def convert_cb(btn):
if (self.is_inferencing):
return
self.convert()
self.convert_btn = widgets.Button(description="Конвертировать")
self.convert_btn.on_click(convert_cb)
def refresh_files(btn):
self.update_file_list_dropdown()
self.refresh_files_btn = widgets.Button(description="Обновить аудиофайлы")
self.refresh_files_btn.on_click(refresh_files)
cluster_container = widgets.HBox([self.cluster_ratio_tx, widgets.Label(value="Отрегулируйте соотношение между звучанием, похожим на тембр цели, и четкостью и артикулированностью, чтобы найти подходящий компромисс.")])
noise_scale_container = widgets.HBox([self.noise_scale_tx, widgets.Label(value="Если выходной сигнал звучит гулко/металлически, попробуйте увеличить масштаб шума. Если появляются артефакты, похожие на плохое шумоподавление или погружение динамика в воду, уменьшите масштаб шума.")])
audio_files_container = widgets.HBox([
self.audio_files_dropdown,
self.refresh_files_btn
])
voice_cloning_tab = widgets.VBox([self.speaker_dropdown, audio_files_container, cluster_container, noise_scale_container])
buttons_container = widgets.HBox([self.convert_btn])
if (len(self.audio_files) == 0):
audio_file_error_widget = widgets.HBox([
widgets.Label(value='Пожалуйста, загрузите аудиофайл и нажмите кнопку воспроизведения, чтобы повторно запустить эту ячейку.')
])
display(audio_file_error_widget)
return
display(voice_cloning_tab)
display(buttons_container)
def update_file_list_dropdown(self):
self.audio_files = get_audio_files()
self.audio_files_dropdown.options = self.audio_files
def clean(self):
input_filepaths = [f for f in glob.glob('/content/**/*.*', recursive=True)
if any(f.endswith(ex) for ex in ['.wav','.flac','.mp3','.ogg','.opus'])]
for f in input_filepaths:
os.remove(f)
subprocess.run(['sudo', 'updatedb'])
self.update_file_list_dropdown()
def convert(self):
ts0 = time.time()
# Prevent a conversion process from one starting if one is already running
self.is_inferencing = True
speaker = next(x for x in self.speakers if x["name"] ==
self.speaker_dropdown.value)
model_path = os.path.join(os.getcwd(),speaker["model_path"])
config_path = os.path.join(os.getcwd(),speaker["cfg_path"])
cluster_path = os.path.join(os.getcwd(),speaker["cluster_path"])
file_path = os.path.join(os.getcwd(), str(self.audio_files_dropdown.value))
f0_method = "dio"
transpose = 0
noise_scale = int(self.noise_scale_tx.value)
cluster_ratio = float(self.cluster_ratio_tx.value)
is_pitch_prediction_enabled = True
if not speaker:
print("Пожалуйста, выберите модель искусственного интеллекта.")
return
if not self.audio_files_dropdown.value or self.audio_files_dropdown.value == "":
print("Пожалуйста, выберите аудиофайл для клонирования.")
return
if not is_valid_filename(file_path):
try:
new_filename = clean_filename(file_path)
os.rename(file_path, new_filename)
file_path = new_filename
except:
print("Пожалуйста, повторно запустите эту ячейку, нажав кнопку воспроизведения. Произошла неизвестная ошибка.")
if os.path.exists(SEGMENTS_DIRNAME) or os.path.exists(INFERENCE_OUTPUT_DIRNAME):
print(f"Обнаружены предыдущие папки {SEGMENTS_DIRNAME} и {INFERENCE_OUTPUT_DIRNAME}.")
cleanup_dirs()
# SLICE AUDIO
slice_audio(file_path)
# PERFORM INFERENCE
os.makedirs("inference_output", exist_ok=True)
run_inference(speaker, f0_method, transpose, noise_scale, cluster_ratio, is_pitch_prediction_enabled)
cleaned_speaker_name = speaker['name'].replace(" ", "_")
final_filename = f"{Path(file_path).stem}_{cleaned_speaker_name}_output{Path(file_path).suffix}"
self.final_filename = final_filename
# CONCATENATE FILES IN INFERENCE OUTPUT DIR
concatenate_segments(final_filename)
# MOVE FINAL CONCATENATED FILE TO TOP-LEVEL IN CURRENT DIR
shutil.move(Path(INFERENCE_OUTPUT_DIRNAME, final_filename), Path(final_filename))
# CLEAN UP
cleanup_dirs()
ts1 = time.time()
print(f"Total Time Elapsed: {ts1 - ts0} seconds")
print(f"\nГотово! Можете скачать выходной файл через проводник как '{final_filename}' или через аудио-плеер ниже.")
audio = Audio(final_filename, autoplay=False)
display(audio)
self.is_inferencing = False
self.update_file_list_dropdown()
gui = InferenceGui()
|