Spaces:
Sleeping
Sleeping
File size: 24,749 Bytes
e613cea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 |
from __future__ import annotations
from copy import deepcopy
from logging import getLogger
from pathlib import Path
from typing import Any, Callable, Iterable, Literal
import attrs
import librosa
import numpy as np
import torch
from cm_time import timer
from numpy import dtype, float32, ndarray
import so_vits_svc_fork.f0
from so_vits_svc_fork import cluster, utils
from ..modules.synthesizers import SynthesizerTrn
from ..utils import get_optimal_device
LOG = getLogger(__name__)
def pad_array(array_, target_length: int):
current_length = array_.shape[0]
if current_length >= target_length:
return array_[
(current_length - target_length)
// 2 : (current_length - target_length)
// 2
+ target_length,
...,
]
else:
pad_width = target_length - current_length
pad_left = pad_width // 2
pad_right = pad_width - pad_left
padded_arr = np.pad(
array_, (pad_left, pad_right), "constant", constant_values=(0, 0)
)
return padded_arr
@attrs.frozen(kw_only=True)
class Chunk:
is_speech: bool
audio: ndarray[Any, dtype[float32]]
start: int
end: int
@property
def duration(self) -> float32:
# return self.end - self.start
return float32(self.audio.shape[0])
def __repr__(self) -> str:
return f"Chunk(Speech: {self.is_speech}, {self.duration})"
def split_silence(
audio: ndarray[Any, dtype[float32]],
top_db: int = 40,
ref: float | Callable[[ndarray[Any, dtype[float32]]], float] = 1,
frame_length: int = 2048,
hop_length: int = 512,
aggregate: Callable[[ndarray[Any, dtype[float32]]], float] = np.mean,
max_chunk_length: int = 0,
) -> Iterable[Chunk]:
non_silence_indices = librosa.effects.split(
audio,
top_db=top_db,
ref=ref,
frame_length=frame_length,
hop_length=hop_length,
aggregate=aggregate,
)
last_end = 0
for start, end in non_silence_indices:
if start != last_end:
yield Chunk(
is_speech=False, audio=audio[last_end:start], start=last_end, end=start
)
while max_chunk_length > 0 and end - start > max_chunk_length:
yield Chunk(
is_speech=True,
audio=audio[start : start + max_chunk_length],
start=start,
end=start + max_chunk_length,
)
start += max_chunk_length
if end - start > 0:
yield Chunk(is_speech=True, audio=audio[start:end], start=start, end=end)
last_end = end
if last_end != len(audio):
yield Chunk(
is_speech=False, audio=audio[last_end:], start=last_end, end=len(audio)
)
class Svc:
def __init__(
self,
*,
net_g_path: Path | str,
config_path: Path | str,
device: torch.device | str | None = None,
cluster_model_path: Path | str | None = None,
half: bool = False,
):
self.net_g_path = net_g_path
if device is None:
self.device = (get_optimal_device(),)
else:
self.device = torch.device(device)
self.hps = utils.get_hparams(config_path)
self.target_sample = self.hps.data.sampling_rate
self.hop_size = self.hps.data.hop_length
self.spk2id = self.hps.spk
self.hubert_model = utils.get_hubert_model(
self.device, self.hps.data.get("contentvec_final_proj", True)
)
self.dtype = torch.float16 if half else torch.float32
self.contentvec_final_proj = self.hps.data.__dict__.get(
"contentvec_final_proj", True
)
self.load_model()
if cluster_model_path is not None and Path(cluster_model_path).exists():
self.cluster_model = cluster.get_cluster_model(cluster_model_path)
def load_model(self):
self.net_g = SynthesizerTrn(
self.hps.data.filter_length // 2 + 1,
self.hps.train.segment_size // self.hps.data.hop_length,
**self.hps.model,
)
_ = utils.load_checkpoint(self.net_g_path, self.net_g, None)
_ = self.net_g.eval()
for m in self.net_g.modules():
utils.remove_weight_norm_if_exists(m)
_ = self.net_g.to(self.device, dtype=self.dtype)
self.net_g = self.net_g
def get_unit_f0(
self,
audio: ndarray[Any, dtype[float32]],
tran: int,
cluster_infer_ratio: float,
speaker: int | str,
f0_method: Literal[
"crepe", "crepe-tiny", "parselmouth", "dio", "harvest"
] = "dio",
):
f0 = so_vits_svc_fork.f0.compute_f0(
audio,
sampling_rate=self.target_sample,
hop_length=self.hop_size,
method=f0_method,
)
f0, uv = so_vits_svc_fork.f0.interpolate_f0(f0)
f0 = torch.as_tensor(f0, dtype=self.dtype, device=self.device)
uv = torch.as_tensor(uv, dtype=self.dtype, device=self.device)
f0 = f0 * 2 ** (tran / 12)
f0 = f0.unsqueeze(0)
uv = uv.unsqueeze(0)
c = utils.get_content(
self.hubert_model,
audio,
self.device,
self.target_sample,
self.contentvec_final_proj,
).to(self.dtype)
c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1])
if cluster_infer_ratio != 0:
cluster_c = cluster.get_cluster_center_result(
self.cluster_model, c.cpu().numpy().T, speaker
).T
cluster_c = torch.FloatTensor(cluster_c).to(self.device)
c = cluster_infer_ratio * cluster_c + (1 - cluster_infer_ratio) * c
c = c.unsqueeze(0)
return c, f0, uv
def infer(
self,
speaker: int | str,
transpose: int,
audio: ndarray[Any, dtype[float32]],
cluster_infer_ratio: float = 0,
auto_predict_f0: bool = False,
noise_scale: float = 0.4,
f0_method: Literal[
"crepe", "crepe-tiny", "parselmouth", "dio", "harvest"
] = "dio",
) -> tuple[torch.Tensor, int]:
audio = audio.astype(np.float32)
# get speaker id
if isinstance(speaker, int):
if len(self.spk2id.__dict__) >= speaker:
speaker_id = speaker
else:
raise ValueError(
f"Speaker id {speaker} >= number of speakers {len(self.spk2id.__dict__)}"
)
else:
if speaker in self.spk2id.__dict__:
speaker_id = self.spk2id.__dict__[speaker]
else:
LOG.warning(f"Speaker {speaker} is not found. Use speaker 0 instead.")
speaker_id = 0
speaker_candidates = list(
filter(lambda x: x[1] == speaker_id, self.spk2id.__dict__.items())
)
if len(speaker_candidates) > 1:
raise ValueError(
f"Speaker_id {speaker_id} is not unique. Candidates: {speaker_candidates}"
)
elif len(speaker_candidates) == 0:
raise ValueError(f"Speaker_id {speaker_id} is not found.")
speaker = speaker_candidates[0][0]
sid = torch.LongTensor([int(speaker_id)]).to(self.device).unsqueeze(0)
# get unit f0
c, f0, uv = self.get_unit_f0(
audio, transpose, cluster_infer_ratio, speaker, f0_method
)
# inference
with torch.no_grad():
with timer() as t:
audio = self.net_g.infer(
c,
f0=f0,
g=sid,
uv=uv,
predict_f0=auto_predict_f0,
noice_scale=noise_scale,
)[0, 0].data.float()
audio_duration = audio.shape[-1] / self.target_sample
LOG.info(
f"Inference time: {t.elapsed:.2f}s, RTF: {t.elapsed / audio_duration:.2f}"
)
torch.cuda.empty_cache()
return audio, audio.shape[-1]
def infer_silence(
self,
audio: np.ndarray[Any, np.dtype[np.float32]],
*,
# svc config
speaker: int | str,
transpose: int = 0,
auto_predict_f0: bool = False,
cluster_infer_ratio: float = 0,
noise_scale: float = 0.4,
f0_method: Literal[
"crepe", "crepe-tiny", "parselmouth", "dio", "harvest"
] = "dio",
# slice config
db_thresh: int = -40,
pad_seconds: float = 0.5,
chunk_seconds: float = 0.5,
absolute_thresh: bool = False,
max_chunk_seconds: float = 40,
# fade_seconds: float = 0.0,
) -> np.ndarray[Any, np.dtype[np.float32]]:
sr = self.target_sample
result_audio = np.array([], dtype=np.float32)
chunk_length_min = chunk_length_min = (
int(
min(
sr / so_vits_svc_fork.f0.f0_min * 20 + 1,
chunk_seconds * sr,
)
)
// 2
)
for chunk in split_silence(
audio,
top_db=-db_thresh,
frame_length=chunk_length_min * 2,
hop_length=chunk_length_min,
ref=1 if absolute_thresh else np.max,
max_chunk_length=int(max_chunk_seconds * sr),
):
LOG.info(f"Chunk: {chunk}")
if not chunk.is_speech:
audio_chunk_infer = np.zeros_like(chunk.audio)
else:
# pad
pad_len = int(sr * pad_seconds)
audio_chunk_pad = np.concatenate(
[
np.zeros([pad_len], dtype=np.float32),
chunk.audio,
np.zeros([pad_len], dtype=np.float32),
]
)
audio_chunk_pad_infer_tensor, _ = self.infer(
speaker,
transpose,
audio_chunk_pad,
cluster_infer_ratio=cluster_infer_ratio,
auto_predict_f0=auto_predict_f0,
noise_scale=noise_scale,
f0_method=f0_method,
)
audio_chunk_pad_infer = audio_chunk_pad_infer_tensor.cpu().numpy()
pad_len = int(self.target_sample * pad_seconds)
cut_len_2 = (len(audio_chunk_pad_infer) - len(chunk.audio)) // 2
audio_chunk_infer = audio_chunk_pad_infer[
cut_len_2 : cut_len_2 + len(chunk.audio)
]
# add fade
# fade_len = int(self.target_sample * fade_seconds)
# _audio[:fade_len] = _audio[:fade_len] * np.linspace(0, 1, fade_len)
# _audio[-fade_len:] = _audio[-fade_len:] * np.linspace(1, 0, fade_len)
# empty cache
torch.cuda.empty_cache()
result_audio = np.concatenate([result_audio, audio_chunk_infer])
result_audio = result_audio[: audio.shape[0]]
return result_audio
def sola_crossfade(
first: ndarray[Any, dtype[float32]],
second: ndarray[Any, dtype[float32]],
crossfade_len: int,
sola_search_len: int,
) -> ndarray[Any, dtype[float32]]:
cor_nom = np.convolve(
second[: sola_search_len + crossfade_len],
np.flip(first[-crossfade_len:]),
"valid",
)
cor_den = np.sqrt(
np.convolve(
second[: sola_search_len + crossfade_len] ** 2,
np.ones(crossfade_len),
"valid",
)
+ 1e-8
)
sola_shift = np.argmax(cor_nom / cor_den)
LOG.info(f"SOLA shift: {sola_shift}")
second = second[sola_shift : sola_shift + len(second) - sola_search_len]
return np.concatenate(
[
first[:-crossfade_len],
first[-crossfade_len:] * np.linspace(1, 0, crossfade_len)
+ second[:crossfade_len] * np.linspace(0, 1, crossfade_len),
second[crossfade_len:],
]
)
class Crossfader:
def __init__(
self,
*,
additional_infer_before_len: int,
additional_infer_after_len: int,
crossfade_len: int,
sola_search_len: int = 384,
) -> None:
if additional_infer_before_len < 0:
raise ValueError("additional_infer_len must be >= 0")
if crossfade_len < 0:
raise ValueError("crossfade_len must be >= 0")
if additional_infer_after_len < 0:
raise ValueError("additional_infer_len must be >= 0")
if additional_infer_before_len < 0:
raise ValueError("additional_infer_len must be >= 0")
self.additional_infer_before_len = additional_infer_before_len
self.additional_infer_after_len = additional_infer_after_len
self.crossfade_len = crossfade_len
self.sola_search_len = sola_search_len
self.last_input_left = np.zeros(
sola_search_len
+ crossfade_len
+ additional_infer_before_len
+ additional_infer_after_len,
dtype=np.float32,
)
self.last_infered_left = np.zeros(crossfade_len, dtype=np.float32)
def process(
self, input_audio: ndarray[Any, dtype[float32]], *args, **kwargs: Any
) -> ndarray[Any, dtype[float32]]:
"""
chunks : ■■■■■■□□□□□□
add last input:□■■■■■■
■□□□□□□
infer :□■■■■■■
■□□□□□□
crossfade :▲■■■■■
▲□□□□□
"""
# check input
if input_audio.ndim != 1:
raise ValueError("Input audio must be 1-dimensional.")
if (
input_audio.shape[0] + self.additional_infer_before_len
<= self.crossfade_len
):
raise ValueError(
f"Input audio length ({input_audio.shape[0]}) + additional_infer_len ({self.additional_infer_before_len}) must be greater than crossfade_len ({self.crossfade_len})."
)
input_audio = input_audio.astype(np.float32)
input_audio_len = len(input_audio)
# concat last input and infer
input_audio_concat = np.concatenate([self.last_input_left, input_audio])
del input_audio
pad_len = 0
if pad_len:
infer_audio_concat = self.infer(
np.pad(input_audio_concat, (pad_len, pad_len), mode="reflect"),
*args,
**kwargs,
)[pad_len:-pad_len]
else:
infer_audio_concat = self.infer(input_audio_concat, *args, **kwargs)
# debug SOLA (using copy synthesis with a random shift)
"""
rs = int(np.random.uniform(-200,200))
LOG.info(f"Debug random shift: {rs}")
infer_audio_concat = np.roll(input_audio_concat, rs)
"""
if len(infer_audio_concat) != len(input_audio_concat):
raise ValueError(
f"Inferred audio length ({len(infer_audio_concat)}) should be equal to input audio length ({len(input_audio_concat)})."
)
infer_audio_to_use = infer_audio_concat[
-(
self.sola_search_len
+ self.crossfade_len
+ input_audio_len
+ self.additional_infer_after_len
) : -self.additional_infer_after_len
]
assert (
len(infer_audio_to_use)
== input_audio_len + self.sola_search_len + self.crossfade_len
), f"{len(infer_audio_to_use)} != {input_audio_len + self.sola_search_len + self.cross_fade_len}"
_audio = sola_crossfade(
self.last_infered_left,
infer_audio_to_use,
self.crossfade_len,
self.sola_search_len,
)
result_audio = _audio[: -self.crossfade_len]
assert (
len(result_audio) == input_audio_len
), f"{len(result_audio)} != {input_audio_len}"
# update last input and inferred
self.last_input_left = input_audio_concat[
-(
self.sola_search_len
+ self.crossfade_len
+ self.additional_infer_before_len
+ self.additional_infer_after_len
) :
]
self.last_infered_left = _audio[-self.crossfade_len :]
return result_audio
def infer(
self, input_audio: ndarray[Any, dtype[float32]]
) -> ndarray[Any, dtype[float32]]:
return input_audio
class RealtimeVC(Crossfader):
def __init__(
self,
*,
svc_model: Svc,
crossfade_len: int = 3840,
additional_infer_before_len: int = 7680,
additional_infer_after_len: int = 7680,
split: bool = True,
) -> None:
self.svc_model = svc_model
self.split = split
super().__init__(
crossfade_len=crossfade_len,
additional_infer_before_len=additional_infer_before_len,
additional_infer_after_len=additional_infer_after_len,
)
def process(
self,
input_audio: ndarray[Any, dtype[float32]],
*args: Any,
**kwargs: Any,
) -> ndarray[Any, dtype[float32]]:
return super().process(input_audio, *args, **kwargs)
def infer(
self,
input_audio: np.ndarray[Any, np.dtype[np.float32]],
# svc config
speaker: int | str,
transpose: int,
cluster_infer_ratio: float = 0,
auto_predict_f0: bool = False,
noise_scale: float = 0.4,
f0_method: Literal[
"crepe", "crepe-tiny", "parselmouth", "dio", "harvest"
] = "dio",
# slice config
db_thresh: int = -40,
pad_seconds: float = 0.5,
chunk_seconds: float = 0.5,
) -> ndarray[Any, dtype[float32]]:
# infer
if self.split:
return self.svc_model.infer_silence(
audio=input_audio,
speaker=speaker,
transpose=transpose,
cluster_infer_ratio=cluster_infer_ratio,
auto_predict_f0=auto_predict_f0,
noise_scale=noise_scale,
f0_method=f0_method,
db_thresh=db_thresh,
pad_seconds=pad_seconds,
chunk_seconds=chunk_seconds,
absolute_thresh=True,
)
else:
rms = np.sqrt(np.mean(input_audio**2))
min_rms = 10 ** (db_thresh / 20)
if rms < min_rms:
LOG.info(f"Skip silence: RMS={rms:.2f} < {min_rms:.2f}")
return np.zeros_like(input_audio)
else:
LOG.info(f"Start inference: RMS={rms:.2f} >= {min_rms:.2f}")
infered_audio_c, _ = self.svc_model.infer(
speaker=speaker,
transpose=transpose,
audio=input_audio,
cluster_infer_ratio=cluster_infer_ratio,
auto_predict_f0=auto_predict_f0,
noise_scale=noise_scale,
f0_method=f0_method,
)
return infered_audio_c.cpu().numpy()
class RealtimeVC2:
chunk_store: list[Chunk]
def __init__(self, svc_model: Svc) -> None:
self.input_audio_store = np.array([], dtype=np.float32)
self.chunk_store = []
self.svc_model = svc_model
def process(
self,
input_audio: np.ndarray[Any, np.dtype[np.float32]],
# svc config
speaker: int | str,
transpose: int,
cluster_infer_ratio: float = 0,
auto_predict_f0: bool = False,
noise_scale: float = 0.4,
f0_method: Literal[
"crepe", "crepe-tiny", "parselmouth", "dio", "harvest"
] = "dio",
# slice config
db_thresh: int = -40,
chunk_seconds: float = 0.5,
) -> ndarray[Any, dtype[float32]]:
def infer(audio: ndarray[Any, dtype[float32]]) -> ndarray[Any, dtype[float32]]:
infered_audio_c, _ = self.svc_model.infer(
speaker=speaker,
transpose=transpose,
audio=audio,
cluster_infer_ratio=cluster_infer_ratio,
auto_predict_f0=auto_predict_f0,
noise_scale=noise_scale,
f0_method=f0_method,
)
return infered_audio_c.cpu().numpy()
self.input_audio_store = np.concatenate([self.input_audio_store, input_audio])
LOG.info(f"input_audio_store: {self.input_audio_store.shape}")
sr = self.svc_model.target_sample
chunk_length_min = (
int(min(sr / so_vits_svc_fork.f0.f0_min * 20 + 1, chunk_seconds * sr)) // 2
)
LOG.info(f"Chunk length min: {chunk_length_min}")
chunk_list = list(
split_silence(
self.input_audio_store,
-db_thresh,
frame_length=chunk_length_min * 2,
hop_length=chunk_length_min,
ref=1, # use absolute threshold
)
)
assert len(chunk_list) > 0
LOG.info(f"Chunk list: {chunk_list}")
# do not infer LAST incomplete is_speech chunk and save to store
if chunk_list[-1].is_speech:
self.input_audio_store = chunk_list.pop().audio
else:
self.input_audio_store = np.array([], dtype=np.float32)
# infer complete is_speech chunk and save to store
self.chunk_store.extend(
[
attrs.evolve(c, audio=infer(c.audio) if c.is_speech else c.audio)
for c in chunk_list
]
)
# calculate lengths and determine compress rate
total_speech_len = sum(
[c.duration if c.is_speech else 0 for c in self.chunk_store]
)
total_silence_len = sum(
[c.duration if not c.is_speech else 0 for c in self.chunk_store]
)
input_audio_len = input_audio.shape[0]
silence_compress_rate = total_silence_len / max(
0, input_audio_len - total_speech_len
)
LOG.info(
f"Total speech len: {total_speech_len}, silence len: {total_silence_len}, silence compress rate: {silence_compress_rate}"
)
# generate output audio
output_audio = np.array([], dtype=np.float32)
break_flag = False
LOG.info(f"Chunk store: {self.chunk_store}")
for chunk in deepcopy(self.chunk_store):
compress_rate = 1 if chunk.is_speech else silence_compress_rate
left_len = input_audio_len - output_audio.shape[0]
# calculate chunk duration
chunk_duration_output = int(min(chunk.duration / compress_rate, left_len))
chunk_duration_input = int(min(chunk.duration, left_len * compress_rate))
LOG.info(
f"Chunk duration output: {chunk_duration_output}, input: {chunk_duration_input}, left len: {left_len}"
)
# remove chunk from store
self.chunk_store.pop(0)
if chunk.duration > chunk_duration_input:
left_chunk = attrs.evolve(
chunk, audio=chunk.audio[chunk_duration_input:]
)
chunk = attrs.evolve(chunk, audio=chunk.audio[:chunk_duration_input])
self.chunk_store.insert(0, left_chunk)
break_flag = True
if chunk.is_speech:
# if is_speech, just concat
output_audio = np.concatenate([output_audio, chunk.audio])
else:
# if is_silence, concat with zeros and compress with silence_compress_rate
output_audio = np.concatenate(
[
output_audio,
np.zeros(
chunk_duration_output,
dtype=np.float32,
),
]
)
if break_flag:
break
LOG.info(f"Chunk store: {self.chunk_store}, output_audio: {output_audio.shape}")
# make same length (errors)
output_audio = output_audio[:input_audio_len]
output_audio = np.concatenate(
[
output_audio,
np.zeros(input_audio_len - output_audio.shape[0], dtype=np.float32),
]
)
return output_audio
|