Spaces:
Sleeping
Sleeping
import spaces | |
import torch | |
from diffusers import FluxPipeline | |
import gradio as gr | |
import random | |
import numpy as np | |
import os | |
#from huggingface_hub import login | |
if torch.cuda.is_available(): | |
device = "cuda" | |
print("Using GPU") | |
else: | |
device = "cpu" | |
print("Using CPU") | |
# login hf token | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
#login(token=HF_TOKEN) | |
MAX_SEED = np.iinfo(np.int32).max | |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1" | |
# Initialize the pipeline and download the model | |
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) | |
pipe.to(device) | |
# Enable memory optimizations | |
pipe.enable_attention_slicing() | |
# Define the image generation function | |
def generate_image(promptx, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt, progress=gr.Progress(track_tqdm=True)): | |
if seed == 0: | |
seed = random.randint(1, MAX_SEED) | |
generato = torch.Generator().manual_seed(seed) | |
with torch.inference_mode(): | |
out = pipe( | |
prompt=promptx, | |
num_inference_steps=num_inference_steps, | |
height=height, | |
width=width, | |
guidance_scale=guidance_scale, | |
generator=generato, | |
num_images_per_prompt=num_images_per_prompt | |
).images | |
return out | |
# Create the Gradio interface | |
examples = [ | |
["Full-body, realistic photo of a network engineer in a data center, conducting an experiment"] | |
] | |
css = ''' | |
.gradio-container{max-width: 100% !important} | |
h1{text-align:center} | |
''' | |
with gr.Blocks(css=css) as fluxobj: | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown( | |
""" # FLUX.1-dev | |
""" | |
) | |
gr.Markdown( | |
""" | |
Made by csit.udru.ac.th for non-commercial license | |
""" | |
) | |
with gr.Group(): | |
with gr.Row(): | |
promptx = gr.Textbox(label="", show_label=False, info="", placeholder="Describe the image you want") | |
run_button = gr.Button("Generate", scale=0) | |
resultf = gr.Gallery(label="Generated AI Images", elem_id="gallery") | |
with gr.Accordion("Advanced options", open=False): | |
with gr.Row(): | |
num_inference_steps = gr.Slider(label="Number of Inference Steps", info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", minimum=1, maximum=50, value=25, step=1) | |
guidance_scale = gr.Slider(label="Guidance Scale", info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", minimum=0.0, maximum=7.0, value=3.5, step=0.1) | |
with gr.Row(): | |
width = gr.Slider(label="Width", info="Width of the Image", minimum=256, maximum=1024, step=32, value=1024) | |
height = gr.Slider(label="Height", info="Height of the Image", minimum=256, maximum=1024, step=32, value=1024) | |
with gr.Row(): | |
seed = gr.Slider(value=42, minimum=0, maximum=MAX_SEED, step=1, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one") | |
num_images_per_prompt = gr.Slider(label="Images Per Prompt", info="Number of Images to generate with the settings",minimum=1, maximum=4, step=1, value=1) | |
# gr.Examples( | |
# examples=examples, | |
# fn=generate_image, | |
# inputs=[promptx, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt], | |
# outputs=[resultf], | |
# cache_examples=CACHE_EXAMPLES | |
# ) | |
gr.on( | |
triggers=[ | |
promptx.submit, | |
run_button.click, | |
], | |
fn=generate_image, | |
inputs=[promptx, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt], | |
outputs=[resultf], | |
) | |
if __name__ == "__main__": | |
fluxobj.queue(max_size=20).launch() |