FLUX.1-dev / app.py
piyk's picture
Update app.py
28e7981 verified
import spaces
import torch
from diffusers import FluxPipeline
import gradio as gr
import random
import numpy as np
import os
#from huggingface_hub import login
if torch.cuda.is_available():
device = "cuda"
print("Using GPU")
else:
device = "cpu"
print("Using CPU")
# login hf token
HF_TOKEN = os.getenv("HF_TOKEN")
#login(token=HF_TOKEN)
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
# Initialize the pipeline and download the model
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.to(device)
# Enable memory optimizations
pipe.enable_attention_slicing()
# Define the image generation function
@spaces.GPU(duration=180)
def generate_image(promptx, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt, progress=gr.Progress(track_tqdm=True)):
if seed == 0:
seed = random.randint(1, MAX_SEED)
generato = torch.Generator().manual_seed(seed)
with torch.inference_mode():
out = pipe(
prompt=promptx,
num_inference_steps=num_inference_steps,
height=height,
width=width,
guidance_scale=guidance_scale,
generator=generato,
num_images_per_prompt=num_images_per_prompt
).images
return out
# Create the Gradio interface
examples = [
["Full-body, realistic photo of a network engineer in a data center, conducting an experiment"]
]
css = '''
.gradio-container{max-width: 100% !important}
h1{text-align:center}
'''
with gr.Blocks(css=css) as fluxobj:
with gr.Row():
with gr.Column():
gr.Markdown(
""" # FLUX.1-dev
"""
)
gr.Markdown(
"""
Made by csit.udru.ac.th for non-commercial license
"""
)
with gr.Group():
with gr.Row():
promptx = gr.Textbox(label="", show_label=False, info="", placeholder="Describe the image you want")
run_button = gr.Button("Generate", scale=0)
resultf = gr.Gallery(label="Generated AI Images", elem_id="gallery")
with gr.Accordion("Advanced options", open=False):
with gr.Row():
num_inference_steps = gr.Slider(label="Number of Inference Steps", info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", minimum=1, maximum=50, value=25, step=1)
guidance_scale = gr.Slider(label="Guidance Scale", info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", minimum=0.0, maximum=7.0, value=3.5, step=0.1)
with gr.Row():
width = gr.Slider(label="Width", info="Width of the Image", minimum=256, maximum=1024, step=32, value=1024)
height = gr.Slider(label="Height", info="Height of the Image", minimum=256, maximum=1024, step=32, value=1024)
with gr.Row():
seed = gr.Slider(value=42, minimum=0, maximum=MAX_SEED, step=1, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one")
num_images_per_prompt = gr.Slider(label="Images Per Prompt", info="Number of Images to generate with the settings",minimum=1, maximum=4, step=1, value=1)
# gr.Examples(
# examples=examples,
# fn=generate_image,
# inputs=[promptx, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt],
# outputs=[resultf],
# cache_examples=CACHE_EXAMPLES
# )
gr.on(
triggers=[
promptx.submit,
run_button.click,
],
fn=generate_image,
inputs=[promptx, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt],
outputs=[resultf],
)
if __name__ == "__main__":
fluxobj.queue(max_size=20).launch()