import spaces import torch from diffusers import FluxPipeline import gradio as gr import random import numpy as np import os #from huggingface_hub import login if torch.cuda.is_available(): device = "cuda" print("Using GPU") else: device = "cpu" print("Using CPU") # login hf token HF_TOKEN = os.getenv("HF_TOKEN") #login(token=HF_TOKEN) MAX_SEED = np.iinfo(np.int32).max CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1" # Initialize the pipeline and download the model pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) pipe.to(device) # Enable memory optimizations pipe.enable_attention_slicing() # Define the image generation function @spaces.GPU(duration=180) def generate_image(promptx, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt, progress=gr.Progress(track_tqdm=True)): if seed == 0: seed = random.randint(1, MAX_SEED) generato = torch.Generator().manual_seed(seed) with torch.inference_mode(): out = pipe( prompt=promptx, num_inference_steps=num_inference_steps, height=height, width=width, guidance_scale=guidance_scale, generator=generato, num_images_per_prompt=num_images_per_prompt ).images return out # Create the Gradio interface examples = [ ["Full-body, realistic photo of a network engineer in a data center, conducting an experiment"] ] css = ''' .gradio-container{max-width: 100% !important} h1{text-align:center} ''' with gr.Blocks(css=css) as fluxobj: with gr.Row(): with gr.Column(): gr.Markdown( """ # FLUX.1-dev """ ) gr.Markdown( """ Made by csit.udru.ac.th for non-commercial license """ ) with gr.Group(): with gr.Row(): promptx = gr.Textbox(label="", show_label=False, info="", placeholder="Describe the image you want") run_button = gr.Button("Generate", scale=0) resultf = gr.Gallery(label="Generated AI Images", elem_id="gallery") with gr.Accordion("Advanced options", open=False): with gr.Row(): num_inference_steps = gr.Slider(label="Number of Inference Steps", info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", minimum=1, maximum=50, value=25, step=1) guidance_scale = gr.Slider(label="Guidance Scale", info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", minimum=0.0, maximum=7.0, value=3.5, step=0.1) with gr.Row(): width = gr.Slider(label="Width", info="Width of the Image", minimum=256, maximum=1024, step=32, value=1024) height = gr.Slider(label="Height", info="Height of the Image", minimum=256, maximum=1024, step=32, value=1024) with gr.Row(): seed = gr.Slider(value=42, minimum=0, maximum=MAX_SEED, step=1, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one") num_images_per_prompt = gr.Slider(label="Images Per Prompt", info="Number of Images to generate with the settings",minimum=1, maximum=4, step=1, value=1) # gr.Examples( # examples=examples, # fn=generate_image, # inputs=[promptx, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt], # outputs=[resultf], # cache_examples=CACHE_EXAMPLES # ) gr.on( triggers=[ promptx.submit, run_button.click, ], fn=generate_image, inputs=[promptx, num_inference_steps, height, width, guidance_scale, seed, num_images_per_prompt], outputs=[resultf], ) if __name__ == "__main__": fluxobj.queue(max_size=20).launch()