Spaces:
Paused
Paused
Commit
·
7396aab
1
Parent(s):
f4882bc
new files
Browse files- config.py +173 -0
- constants.py +2 -0
- models/vision_projector_model.py +44 -0
- utils.py +151 -0
config.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import PretrainedConfig, BitsAndBytesConfig
|
| 3 |
+
import math
|
| 4 |
+
from typing import Optional
|
| 5 |
+
|
| 6 |
+
class VisionProjectorConfig(PretrainedConfig):
|
| 7 |
+
def __init__(
|
| 8 |
+
self,
|
| 9 |
+
input_dim=768,
|
| 10 |
+
hidden_dim=256,
|
| 11 |
+
num_tokens=1,
|
| 12 |
+
output_dim=2560,
|
| 13 |
+
**kwargs
|
| 14 |
+
):
|
| 15 |
+
#super.__init__(**kwargs)
|
| 16 |
+
self.input_dim = input_dim
|
| 17 |
+
self.hidden_dim = hidden_dim
|
| 18 |
+
self.output_dim = output_dim
|
| 19 |
+
self.num_tokens = num_tokens
|
| 20 |
+
self.kwargs = kwargs
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class CustomPhiConfig(PretrainedConfig):
|
| 24 |
+
model_type = "phi-msft"
|
| 25 |
+
attribute_map = {
|
| 26 |
+
"max_position_embeddings": "n_positions",
|
| 27 |
+
"hidden_size": "n_embd",
|
| 28 |
+
"num_attention_heads": "n_head",
|
| 29 |
+
"num_hidden_layers": "n_layer",
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
def __init__(
|
| 33 |
+
self,
|
| 34 |
+
vocab_size: int = 51200,
|
| 35 |
+
n_positions: int = 2048,
|
| 36 |
+
n_embd: int = 2560,
|
| 37 |
+
n_layer: int = 32,
|
| 38 |
+
n_inner: Optional[int] = None,
|
| 39 |
+
n_head: int = 32,
|
| 40 |
+
n_head_kv: Optional[int] = None,
|
| 41 |
+
rotary_dim: Optional[int] = 32,
|
| 42 |
+
activation_function: Optional[str] = "gelu_new",
|
| 43 |
+
flash_attn: bool = False,
|
| 44 |
+
flash_rotary: bool = False,
|
| 45 |
+
fused_dense: bool = False,
|
| 46 |
+
attn_pdrop: float = 0.0,
|
| 47 |
+
embd_pdrop: float = 0.0,
|
| 48 |
+
resid_pdrop: float = 0.1,
|
| 49 |
+
layer_norm_epsilon: float = 1e-05,
|
| 50 |
+
initializer_range: float = 0.02,
|
| 51 |
+
tie_word_embeddings: bool = False,
|
| 52 |
+
pad_vocab_size_multiple: int = 64,
|
| 53 |
+
**kwargs
|
| 54 |
+
) -> None:
|
| 55 |
+
self.vocab_size = int(math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
|
| 56 |
+
self.n_positions = n_positions
|
| 57 |
+
self.n_embd = n_embd
|
| 58 |
+
self.n_layer = n_layer
|
| 59 |
+
self.n_inner = n_inner
|
| 60 |
+
self.n_head = n_head
|
| 61 |
+
self.n_head_kv = n_head_kv
|
| 62 |
+
self.rotary_dim = min(rotary_dim, n_embd // n_head)
|
| 63 |
+
self.activation_function = activation_function
|
| 64 |
+
self.flash_attn = flash_attn
|
| 65 |
+
self.flash_rotary = flash_rotary
|
| 66 |
+
self.fused_dense = fused_dense
|
| 67 |
+
self.attn_pdrop = attn_pdrop
|
| 68 |
+
self.embd_pdrop = embd_pdrop
|
| 69 |
+
self.resid_pdrop = resid_pdrop
|
| 70 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
| 71 |
+
self.initializer_range = initializer_range
|
| 72 |
+
|
| 73 |
+
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
class CLIPVisionToPhiConfig(PretrainedConfig):
|
| 77 |
+
def __init__(self,
|
| 78 |
+
vision_projector_config: VisionProjectorConfig,
|
| 79 |
+
phi_config: CustomPhiConfig,
|
| 80 |
+
**kwargs
|
| 81 |
+
):
|
| 82 |
+
|
| 83 |
+
#super().__init__(**kwargs)
|
| 84 |
+
|
| 85 |
+
self.vision_projector_config = vision_projector_config
|
| 86 |
+
self.phi_config = phi_config
|
| 87 |
+
self.tokenizer = kwargs.get('tokenizer')
|
| 88 |
+
self.freeze_phi_model = True
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
'''
|
| 92 |
+
phi_config_obj = CustomPhiConfig(
|
| 93 |
+
**{
|
| 94 |
+
"_name_or_path": "microsoft/phi-2",
|
| 95 |
+
"architectures": [
|
| 96 |
+
"PhiForCausalLM"
|
| 97 |
+
],
|
| 98 |
+
"auto_map": {
|
| 99 |
+
"AutoConfig": "configuration_phi.PhiConfig",
|
| 100 |
+
"AutoModelForCausalLM": "modeling_phi.PhiForCausalLM"
|
| 101 |
+
},
|
| 102 |
+
"img_processor": None,
|
| 103 |
+
"model_type": "phi-msft",
|
| 104 |
+
"torch_dtype": "float16",
|
| 105 |
+
"transformers_version": "4.35.2"
|
| 106 |
+
}
|
| 107 |
+
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
'''
|
| 111 |
+
from peft import LoraConfig
|
| 112 |
+
|
| 113 |
+
bnb_config = BitsAndBytesConfig(
|
| 114 |
+
load_in_4bit=True,
|
| 115 |
+
bnb_4bit_quant_type="nf4",
|
| 116 |
+
bnb_4bit_compute_dtype=torch.float16
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
peft_config = LoraConfig(
|
| 120 |
+
lora_alpha=16,
|
| 121 |
+
lora_dropout=0.1,
|
| 122 |
+
r=64,
|
| 123 |
+
bias="none",
|
| 124 |
+
task_type="CAUSAL_LM",
|
| 125 |
+
target_modules=[
|
| 126 |
+
"q_proj",
|
| 127 |
+
"k_proj",
|
| 128 |
+
"v_proj",
|
| 129 |
+
"dense",
|
| 130 |
+
"fc1",
|
| 131 |
+
"fc2"
|
| 132 |
+
]
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
class MultiInstructModelConfig(PretrainedConfig):
|
| 136 |
+
def __init__(self,
|
| 137 |
+
vision_projector_config: Optional[VisionProjectorConfig] = None,
|
| 138 |
+
**kwargs
|
| 139 |
+
):
|
| 140 |
+
|
| 141 |
+
self.vision_projector_config = vision_projector_config
|
| 142 |
+
self.quantization_config = bnb_config
|
| 143 |
+
|
| 144 |
+
self.peft_config = peft_config
|
| 145 |
+
|
| 146 |
+
self.tokenizer = kwargs.get('tokenizer')
|
| 147 |
+
self.freeze_vision_projector = True
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
extra = dict(
|
| 151 |
+
num_epochs=1,
|
| 152 |
+
resume=False,
|
| 153 |
+
data_dir='../data',
|
| 154 |
+
checkpoint_dir='../checkpoints',
|
| 155 |
+
max_seqlen=80,
|
| 156 |
+
batch_size=2,
|
| 157 |
+
live_image_processing=True,
|
| 158 |
+
vision_projector_file='/Users/piyushgrover/Downloads/old_vt_proj/vp_ckpt_0.pth',
|
| 159 |
+
validation_phase=False
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
qlora_config = dict(
|
| 163 |
+
num_steps=1000,
|
| 164 |
+
max_seqlen=512,
|
| 165 |
+
max_caption_len=100,
|
| 166 |
+
batch_size=8,
|
| 167 |
+
micro_batch_size=2,
|
| 168 |
+
data_dir='../data',
|
| 169 |
+
output_dir="./results",
|
| 170 |
+
vision_model=True,
|
| 171 |
+
vision_projector_file='models/vision_projector/vp_ckpt_0.pth',
|
| 172 |
+
resume=False
|
| 173 |
+
)
|
constants.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
IGNORE_INDEX = -100
|
| 2 |
+
IMAGE_TOKEN_INDEX = -200
|
models/vision_projector_model.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
from config import VisionProjectorConfig
|
| 5 |
+
|
| 6 |
+
'''
|
| 7 |
+
class VisionProjector(nn.Module):
|
| 8 |
+
|
| 9 |
+
def __init__(self, config: VisionProjectorConfig):
|
| 10 |
+
super().__init__()
|
| 11 |
+
self.config = config
|
| 12 |
+
self.input_dim = config.input_dim
|
| 13 |
+
self.hidden_dim = config.hidden_dim
|
| 14 |
+
self.output_dim = config.output_dim
|
| 15 |
+
self.num_tokens = config.num_tokens
|
| 16 |
+
|
| 17 |
+
self.pre_norm = nn.LayerNorm(self.input_dim)
|
| 18 |
+
|
| 19 |
+
self.proj = nn.Sequential(
|
| 20 |
+
nn.GELU(),
|
| 21 |
+
nn.Linear(self.input_dim, self.num_tokens * self.output_dim)
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
def forward(self, x):
|
| 25 |
+
x = self.pre_norm(x)
|
| 26 |
+
x = self.proj(x)
|
| 27 |
+
x = x.reshape( (-1, self.num_tokens, self.output_dim) )
|
| 28 |
+
return x
|
| 29 |
+
|
| 30 |
+
'''
|
| 31 |
+
|
| 32 |
+
class VisionProjector(nn.Module):
|
| 33 |
+
|
| 34 |
+
def __init__(self, config: VisionProjectorConfig):
|
| 35 |
+
super().__init__()
|
| 36 |
+
self.config = config
|
| 37 |
+
self.input_dim = config.input_dim
|
| 38 |
+
self.output_dim = config.output_dim
|
| 39 |
+
|
| 40 |
+
self.proj = nn.Linear(self.input_dim, self.output_dim)
|
| 41 |
+
|
| 42 |
+
def forward(self, x):
|
| 43 |
+
x = self.proj(x)
|
| 44 |
+
return x
|
utils.py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from constants import *
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 6 |
+
|
| 7 |
+
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
|
| 8 |
+
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
|
| 9 |
+
|
| 10 |
+
def insert_separator(X, sep):
|
| 11 |
+
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
|
| 12 |
+
|
| 13 |
+
input_ids = []
|
| 14 |
+
offset = 0
|
| 15 |
+
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
|
| 16 |
+
offset = 1
|
| 17 |
+
input_ids.append(prompt_chunks[0][0])
|
| 18 |
+
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
|
| 19 |
+
input_ids.extend(x[offset:])
|
| 20 |
+
|
| 21 |
+
if return_tensors is not None:
|
| 22 |
+
if return_tensors == 'pt':
|
| 23 |
+
return torch.tensor(input_ids, dtype=torch.long)
|
| 24 |
+
raise ValueError(f'Unsupported tensor type: {return_tensors}')
|
| 25 |
+
return input_ids
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
|
| 29 |
+
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
|
| 30 |
+
Args:
|
| 31 |
+
logits: logits distribution shape (batch size x vocabulary size)
|
| 32 |
+
top_k > 0: keep only top k tokens with highest probability (top-k filtering).
|
| 33 |
+
top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
|
| 34 |
+
"""
|
| 35 |
+
top_k = min(top_k, logits.size(-1)) # Safety check
|
| 36 |
+
if top_k > 0:
|
| 37 |
+
# Remove all tokens with a probability less than the last token of the top-k
|
| 38 |
+
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
| 39 |
+
logits[indices_to_remove] = filter_value
|
| 40 |
+
|
| 41 |
+
if top_p > 0.0:
|
| 42 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
| 43 |
+
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
| 44 |
+
|
| 45 |
+
# Remove tokens with cumulative probability above the threshold
|
| 46 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
| 47 |
+
# Shift the indices to the right to keep also the first token above the threshold
|
| 48 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
| 49 |
+
sorted_indices_to_remove[..., 0] = 0
|
| 50 |
+
|
| 51 |
+
indices_to_remove = sorted_indices[sorted_indices_to_remove]
|
| 52 |
+
logits[indices_to_remove] = filter_value
|
| 53 |
+
return logits
|
| 54 |
+
|
| 55 |
+
'''
|
| 56 |
+
def get_image_feature_for_vision_projector(image_url):
|
| 57 |
+
image_url = 'http://images.cocodataset.org/%s/%s' % (self.directory, self.image_indices_json[image_index])
|
| 58 |
+
|
| 59 |
+
image = Image.open(requests.get(image_url, stream=True).raw)
|
| 60 |
+
inputs = self.processor(images=image, return_tensors="pt")
|
| 61 |
+
x = self.model(**inputs, output_hidden_states=True)
|
| 62 |
+
image_feature = x.hidden_states[-2][:, 1:].squeeze(0).cpu().detach()
|
| 63 |
+
'''
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def generate_output(model, tokenizer, length, input_ids=None, image_features=None, inputs_embeds=None, labels=None,
|
| 67 |
+
temperature=1, top_k=0, top_p=0.0):
|
| 68 |
+
if inputs_embeds is None and (image_features is None or input_ids is None):
|
| 69 |
+
print("image_features or input_ids missing.. returning")
|
| 70 |
+
return
|
| 71 |
+
|
| 72 |
+
ie_size = inputs_embeds.size(1) - 1
|
| 73 |
+
inputs = inputs_embeds
|
| 74 |
+
predicted_tokens = [] #torch.tensor([[]]).to(device)
|
| 75 |
+
|
| 76 |
+
label_size = labels.size(1)
|
| 77 |
+
out = {}
|
| 78 |
+
if labels is None:
|
| 79 |
+
with torch.no_grad():
|
| 80 |
+
for idx in range(length):
|
| 81 |
+
outputs = model.phi_model(inputs_embeds=inputs)
|
| 82 |
+
logits = outputs['logits']
|
| 83 |
+
next_token_logits = logits[:, -1, :] / temperature # Apply temperature
|
| 84 |
+
|
| 85 |
+
filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k,
|
| 86 |
+
top_p=top_p) # Apply top-k and/or top-p
|
| 87 |
+
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1) # Sample
|
| 88 |
+
|
| 89 |
+
predicted_tokens.append(next_token)
|
| 90 |
+
next_token_embed = model.text_embedding(next_token)
|
| 91 |
+
inputs = torch.cat((inputs, next_token_embed), dim=1)
|
| 92 |
+
|
| 93 |
+
predicted_tokens = torch.cat([x.unsqueeze(1) for x in predicted_tokens], dim=1)
|
| 94 |
+
out['pred'] = predicted_tokens
|
| 95 |
+
out['logits'] = logits[:, ie_size:, :]
|
| 96 |
+
|
| 97 |
+
return out
|
| 98 |
+
else:
|
| 99 |
+
# traverse_len = labels.size(1) - inputs_embeds.size(1)
|
| 100 |
+
for idx in range(length):
|
| 101 |
+
outputs = model.phi_model(inputs_embeds=inputs)
|
| 102 |
+
logits = outputs['logits']
|
| 103 |
+
next_token_logits = logits[:, -1, :] / temperature # Apply temperature
|
| 104 |
+
|
| 105 |
+
filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k,
|
| 106 |
+
top_p=top_p) # Apply top-k and/or top-p
|
| 107 |
+
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1) # Sample
|
| 108 |
+
|
| 109 |
+
predicted_tokens.append(next_token)
|
| 110 |
+
|
| 111 |
+
tf_token = labels[:, idx : idx+1 ].to(device)
|
| 112 |
+
tf_token_embed = model.text_embedding(tf_token)
|
| 113 |
+
|
| 114 |
+
inputs = torch.cat((inputs, tf_token_embed), dim=1) # Add the token to the generated text
|
| 115 |
+
|
| 116 |
+
predicted_tokens = torch.cat([x.unsqueeze(1) for x in predicted_tokens], dim=1).to(device)
|
| 117 |
+
#predicted_token_logits = torch.cat([x.unsqueeze(1) for x in predicted_token_logits], dim=1).to(device)
|
| 118 |
+
|
| 119 |
+
out = dict(pred=predicted_tokens,
|
| 120 |
+
logits=logits)
|
| 121 |
+
|
| 122 |
+
labels = labels.contiguous().type(torch.LongTensor).to(device)
|
| 123 |
+
|
| 124 |
+
logits = logits[:, ie_size:ie_size+label_size, :].contiguous()
|
| 125 |
+
|
| 126 |
+
loss = model.loss(logits.view(-1, logits.size(-1)), labels.view(-1))
|
| 127 |
+
|
| 128 |
+
out['loss'] = loss
|
| 129 |
+
|
| 130 |
+
#model.train()
|
| 131 |
+
|
| 132 |
+
return out
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def generate_with_logits(logits, temperature=1, top_k=0, top_p=0.0):
|
| 136 |
+
predicted_tokens = []
|
| 137 |
+
|
| 138 |
+
for idx in range(logits.size(1)):
|
| 139 |
+
next_token_logits = logits[:, idx, :] / temperature # Apply temperature
|
| 140 |
+
|
| 141 |
+
filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k,
|
| 142 |
+
top_p=top_p) # Apply top-k and/or top-p
|
| 143 |
+
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1) # Sample
|
| 144 |
+
|
| 145 |
+
predicted_tokens.append(next_token)
|
| 146 |
+
|
| 147 |
+
predicted_tokens = torch.cat([x.unsqueeze(1) for x in predicted_tokens], dim=1).to(device)
|
| 148 |
+
|
| 149 |
+
out = dict(pred=predicted_tokens,
|
| 150 |
+
logits=logits)
|
| 151 |
+
return out
|