piyushgrover commited on
Commit
11973fd
Β·
1 Parent(s): 19e5cfb

Update utils.py

Browse files
Files changed (1) hide show
  1. utils.py +13 -15
utils.py CHANGED
@@ -27,24 +27,22 @@ import gc
27
  gc.collect()
28
  torch.cuda.empty_cache()
29
 
30
- # Load the autoencoder model which will be used to decode the latents into image space.
31
- vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")
32
 
33
- # Load the tokenizer and text encoder to tokenize and encode the text.
34
- tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
35
- text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
36
 
37
- # The UNet model for generating the latents.
38
- unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
 
 
 
 
 
39
 
40
- # The noise scheduler
41
- scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
42
- num_train_timesteps=1000)
43
-
44
- # To the GPU we go!
45
- vae = vae.to(torch_device)
46
- text_encoder = text_encoder.to(torch_device)
47
- unet = unet.to(torch_device)
48
 
49
  seed_values = [0, 0, 0, 0, 0]
50
 
 
27
  gc.collect()
28
  torch.cuda.empty_cache()
29
 
30
+ from diffusers import StableDiffusionPipeline
 
31
 
32
+ model_id = "segmind/tiny-sd"
 
 
33
 
34
+ pipe = StableDiffusionPipeline.from_pretrained(model_id).to("cpu")
35
+ text_encoder = pipe.text_encoder.to(torch_device)
36
+ text_encoder.eval()
37
+ unet = pipe.unet.to(torch_device)
38
+ unet.eval()
39
+ vae = pipe.vae.to(torch_device)
40
+ vae.eval()
41
 
42
+ tokenizer = CLIPTokenizer.from_pretrained('openai/clip-vit-large-patch14')
43
+ scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
44
+ del pipe
45
+ gc.collect()
 
 
 
 
46
 
47
  seed_values = [0, 0, 0, 0, 0]
48