piyushgrover commited on
Commit
b3c5a1a
Β·
1 Parent(s): 8583dc9

Update utils.py

Browse files
Files changed (1) hide show
  1. utils.py +7 -8
utils.py CHANGED
@@ -1,4 +1,4 @@
1
- '''from base64 import b64encode
2
 
3
  import numpy
4
  import torch
@@ -118,9 +118,9 @@ def get_output_embeds(input_embeddings):
118
  # And now they're ready!
119
  return output
120
 
121
- def blue_loss(images):
122
  # How far the pixels are from +80% contrast:
123
- contrast = 230 # it ranges from -255 to +255
124
  contrast_scale_factor = (259 * (contrast + 255)) / (255 * (259 - contrast))
125
  cimgs = (contrast_scale_factor * (images - 0.5) + 0.5 )
126
  cimgs = torch.where(cimgs > 1.0, 1.0, cimgs)
@@ -131,7 +131,7 @@ def blue_loss(images):
131
  return error
132
 
133
  # Generating an image with these modified embeddings
134
- def generate_with_embs(text_input, text_embeddings, output=None, generator=None, additional_guidance=False):
135
  height = 512 # default height of Stable Diffusion
136
  width = 512 # default width of Stable Diffusion
137
  num_inference_steps = 30 # Number of denoising steps
@@ -177,8 +177,8 @@ def generate_with_embs(text_input, text_embeddings, output=None, generator=None,
177
  noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
178
 
179
  #### ADDITIONAL GUIDANCE ###
180
- if additional_guidance:
181
- blue_loss_scale = 80
182
  if i % 5 == 0:
183
  # Requires grad on the latents
184
  latents = latents.detach().requires_grad_()
@@ -191,7 +191,7 @@ def generate_with_embs(text_input, text_embeddings, output=None, generator=None,
191
  denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
192
 
193
  # Calculate loss
194
- loss = blue_loss(denoised_images) * blue_loss_scale
195
 
196
  # Occasionally print it out
197
  if i % 10 == 0:
@@ -218,4 +218,3 @@ token_emb_layer = text_encoder.text_model.embeddings.token_embedding
218
 
219
  pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
220
  #pos_emb_layer
221
- '''
 
1
+ from base64 import b64encode
2
 
3
  import numpy
4
  import torch
 
118
  # And now they're ready!
119
  return output
120
 
121
+ def blue_loss(images, contrast_perc=80):
122
  # How far the pixels are from +80% contrast:
123
+ contrast = 255*contrast_perc // 100 # it ranges from -255 to +255
124
  contrast_scale_factor = (259 * (contrast + 255)) / (255 * (259 - contrast))
125
  cimgs = (contrast_scale_factor * (images - 0.5) + 0.5 )
126
  cimgs = torch.where(cimgs > 1.0, 1.0, cimgs)
 
131
  return error
132
 
133
  # Generating an image with these modified embeddings
134
+ def generate_with_embs(text_input, text_embeddings, output=None, generator=None, contrast_loss=False, contrast_perc=0):
135
  height = 512 # default height of Stable Diffusion
136
  width = 512 # default width of Stable Diffusion
137
  num_inference_steps = 30 # Number of denoising steps
 
177
  noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
178
 
179
  #### ADDITIONAL GUIDANCE ###
180
+ if contrast_loss:
181
+ blue_loss_scale = 70
182
  if i % 5 == 0:
183
  # Requires grad on the latents
184
  latents = latents.detach().requires_grad_()
 
191
  denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
192
 
193
  # Calculate loss
194
+ loss = blue_loss(denoised_images, contrast_perc=contrast_perc) * blue_loss_scale
195
 
196
  # Occasionally print it out
197
  if i % 10 == 0:
 
218
 
219
  pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
220
  #pos_emb_layer