Spaces:
Runtime error
Runtime error
Commit
Β·
b3c5a1a
1
Parent(s):
8583dc9
Update utils.py
Browse files
utils.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
|
2 |
|
3 |
import numpy
|
4 |
import torch
|
@@ -118,9 +118,9 @@ def get_output_embeds(input_embeddings):
|
|
118 |
# And now they're ready!
|
119 |
return output
|
120 |
|
121 |
-
def blue_loss(images):
|
122 |
# How far the pixels are from +80% contrast:
|
123 |
-
contrast =
|
124 |
contrast_scale_factor = (259 * (contrast + 255)) / (255 * (259 - contrast))
|
125 |
cimgs = (contrast_scale_factor * (images - 0.5) + 0.5 )
|
126 |
cimgs = torch.where(cimgs > 1.0, 1.0, cimgs)
|
@@ -131,7 +131,7 @@ def blue_loss(images):
|
|
131 |
return error
|
132 |
|
133 |
# Generating an image with these modified embeddings
|
134 |
-
def generate_with_embs(text_input, text_embeddings, output=None, generator=None,
|
135 |
height = 512 # default height of Stable Diffusion
|
136 |
width = 512 # default width of Stable Diffusion
|
137 |
num_inference_steps = 30 # Number of denoising steps
|
@@ -177,8 +177,8 @@ def generate_with_embs(text_input, text_embeddings, output=None, generator=None,
|
|
177 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
178 |
|
179 |
#### ADDITIONAL GUIDANCE ###
|
180 |
-
if
|
181 |
-
blue_loss_scale =
|
182 |
if i % 5 == 0:
|
183 |
# Requires grad on the latents
|
184 |
latents = latents.detach().requires_grad_()
|
@@ -191,7 +191,7 @@ def generate_with_embs(text_input, text_embeddings, output=None, generator=None,
|
|
191 |
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
|
192 |
|
193 |
# Calculate loss
|
194 |
-
loss = blue_loss(denoised_images) * blue_loss_scale
|
195 |
|
196 |
# Occasionally print it out
|
197 |
if i % 10 == 0:
|
@@ -218,4 +218,3 @@ token_emb_layer = text_encoder.text_model.embeddings.token_embedding
|
|
218 |
|
219 |
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
|
220 |
#pos_emb_layer
|
221 |
-
'''
|
|
|
1 |
+
from base64 import b64encode
|
2 |
|
3 |
import numpy
|
4 |
import torch
|
|
|
118 |
# And now they're ready!
|
119 |
return output
|
120 |
|
121 |
+
def blue_loss(images, contrast_perc=80):
|
122 |
# How far the pixels are from +80% contrast:
|
123 |
+
contrast = 255*contrast_perc // 100 # it ranges from -255 to +255
|
124 |
contrast_scale_factor = (259 * (contrast + 255)) / (255 * (259 - contrast))
|
125 |
cimgs = (contrast_scale_factor * (images - 0.5) + 0.5 )
|
126 |
cimgs = torch.where(cimgs > 1.0, 1.0, cimgs)
|
|
|
131 |
return error
|
132 |
|
133 |
# Generating an image with these modified embeddings
|
134 |
+
def generate_with_embs(text_input, text_embeddings, output=None, generator=None, contrast_loss=False, contrast_perc=0):
|
135 |
height = 512 # default height of Stable Diffusion
|
136 |
width = 512 # default width of Stable Diffusion
|
137 |
num_inference_steps = 30 # Number of denoising steps
|
|
|
177 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
178 |
|
179 |
#### ADDITIONAL GUIDANCE ###
|
180 |
+
if contrast_loss:
|
181 |
+
blue_loss_scale = 70
|
182 |
if i % 5 == 0:
|
183 |
# Requires grad on the latents
|
184 |
latents = latents.detach().requires_grad_()
|
|
|
191 |
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
|
192 |
|
193 |
# Calculate loss
|
194 |
+
loss = blue_loss(denoised_images, contrast_perc=contrast_perc) * blue_loss_scale
|
195 |
|
196 |
# Occasionally print it out
|
197 |
if i % 10 == 0:
|
|
|
218 |
|
219 |
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
|
220 |
#pos_emb_layer
|
|