pjramg commited on
Commit
efac48a
Β·
1 Parent(s): a55b0a9

new OV-API

Browse files
Files changed (1) hide show
  1. app.py +46 -28
app.py CHANGED
@@ -11,8 +11,9 @@ core = Core()
11
 
12
  # Get the available devices
13
  devices = core.available_devices
14
-
15
  inferencer = None
 
 
16
 
17
  example_list = [["bottle/examples/000.png", "anomaly_map", "bottle", "CPU"],
18
  ["pill/examples/014.png", "heat_map", "pill", "CPU"],
@@ -57,27 +58,49 @@ def OV_inference(input_img, operation, category_choice, device):
57
  output_img1 = predictions.image
58
  return output_img1, round(inference_time*1000), round(confidence*100,2)
59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  with gr.Blocks() as demo:
 
61
  gr.Markdown(
62
  """
63
  <img align="left" width="150" src= "https://github.com/openvinotoolkit/anomalib/assets/10940214/7e61a627-d1b0-4ad4-b602-da9b348c0cbe">
64
  <img align="right" width="150" src= "https://github.com/openvinotoolkit/anomalib/assets/10940214/5d6dd038-b40c-441f-ad38-1cf526137de2">
65
 
66
  <h1 align="center"> πŸš€ Anomaly detection πŸš€ </h1>
67
-
68
- Experience the power of the state-of-the-art anomaly detection with Anomalib-OpenVINO Anomaly detection toolbox. This interactive APP leverages the robust capabilities of Anomalib and OpenVINO.
69
-
70
- All model are FP32 precision, if you select GPU it will automatically change precision to FP16. Using Anomalib you can also quantize your model in INT8 using NNCF.
71
-
72
-
73
-
74
- ![](https://github.com/openvinotoolkit/anomalib/assets/10940214/ce78346f-4d27-4f99-bea7-75b87e2ac02a)
75
-
76
-
77
-
78
  """
79
  )
80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
  gr.Markdown("## 1. Select the category over you want to detect anormalities.")
82
  category_choice = gr.Radio(["bottle", "grid", "pill", "zipper", "cubes"], label="Choose the category")
83
 
@@ -92,23 +115,19 @@ with gr.Blocks() as demo:
92
  """
93
  )
94
  device_choice = gr.Dropdown(devices, label="Choose the device")
95
-
96
- gr.Markdown("## 3. Compile the model")
97
- compile_btn = gr.Button("Compile Model")
98
 
99
- gr.Markdown("## 4. Choose the output you want to visualize.")
100
  output_choice = gr.Radio(["original", "anomaly_map", "heat_map", "pred_mask", "segmentations"], label="Choose the output")
101
 
102
- gr.Markdown("## 5. Drop the image in the input image box and run the inference")
103
  with gr.Row():
104
  with gr.Column():
105
- image = gr.Image(type="numpy", label= "Input image")
106
-
107
 
108
  with gr.Column():
109
  output_img = gr.outputs.Image(type="numpy", label="Anomalib Output")
110
 
111
- inference_btn = gr.Button("Run Inference")
112
 
113
  with gr.Row():
114
  # Create your output components
@@ -116,17 +135,16 @@ with gr.Blocks() as demo:
116
  output_confidence = gr.Textbox(label="Confidence [%]")
117
  output_time = gr.Textbox(label="Inference Time [ms]")
118
 
119
- gr.Markdown("Note: Change the image and run the inference again. If you want to change the object you need to recompile the model, that means you need to start from step 1.")
120
- gr.Markdown("## Image Examples")
121
-
122
  gr.Examples(
123
  examples=example_list,
124
  inputs=[image, output_choice, category_choice, device_choice],
125
  outputs=[output_img, output_time, output_confidence],
126
- fn=OV_inference,
127
- )
128
-
129
- compile_btn.click(OV_compilemodel, inputs=[category_choice, device_choice])
130
- inference_btn.click(OV_inference, inputs=[image, output_choice], outputs=[output_img, output_time, output_confidence])
131
 
132
  demo.launch(enable_queue=True)
 
11
 
12
  # Get the available devices
13
  devices = core.available_devices
 
14
  inferencer = None
15
+ prev_category_selection = None
16
+ prev_device_selection = None
17
 
18
  example_list = [["bottle/examples/000.png", "anomaly_map", "bottle", "CPU"],
19
  ["pill/examples/014.png", "heat_map", "pill", "CPU"],
 
58
  output_img1 = predictions.image
59
  return output_img1, round(inference_time*1000), round(confidence*100,2)
60
 
61
+ #Run + Compile the model
62
+ def OV_compile_run_model(category_choice, device_choice, image, output_choice):
63
+ #If a different category or device are selected, compile/re-compile the model
64
+ global prev_category_selection
65
+ global prev_device_selection
66
+ if device_choice != prev_device_selection or category_choice != prev_category_selection:
67
+ OV_compilemodel(category_choice, device_choice)
68
+ prev_category_selection = category_choice
69
+ prev_device_selection = device_choice
70
+ #Run model
71
+ print("Running model")
72
+ output_img, output_time, output_confidence = OV_inference(image, output_choice, category_choice, device_choice)
73
+ return output_img, output_time, output_confidence
74
+
75
  with gr.Blocks() as demo:
76
+
77
  gr.Markdown(
78
  """
79
  <img align="left" width="150" src= "https://github.com/openvinotoolkit/anomalib/assets/10940214/7e61a627-d1b0-4ad4-b602-da9b348c0cbe">
80
  <img align="right" width="150" src= "https://github.com/openvinotoolkit/anomalib/assets/10940214/5d6dd038-b40c-441f-ad38-1cf526137de2">
81
 
82
  <h1 align="center"> πŸš€ Anomaly detection πŸš€ </h1>
83
+
 
 
 
 
 
 
 
 
 
 
84
  """
85
  )
86
 
87
+ with gr.Row():
88
+ with gr.Column():
89
+ gr.Markdown(
90
+ """
91
+ Experience the power of the state-of-the-art anomaly detection with Anomalib-OpenVINO Anomaly detection toolbox. This interactive APP leverages the robust capabilities of Anomalib and OpenVINO.
92
+
93
+ All model are FP32 precision, if you select GPU it will automatically change precision to FP16. Using Anomalib you can also quantize your model in INT8 using NNCF.
94
+ """
95
+ )
96
+
97
+ with gr.Column():
98
+ gr.Markdown(
99
+ """
100
+ ![image](https://github.com/openvinotoolkit/openvino_notebooks/assets/10940214/017d494b-1c37-45f8-bd6e-cad0d64ef652)
101
+ """
102
+ )
103
+
104
  gr.Markdown("## 1. Select the category over you want to detect anormalities.")
105
  category_choice = gr.Radio(["bottle", "grid", "pill", "zipper", "cubes"], label="Choose the category")
106
 
 
115
  """
116
  )
117
  device_choice = gr.Dropdown(devices, label="Choose the device")
 
 
 
118
 
119
+ gr.Markdown("## 3. Choose the output you want to visualize.")
120
  output_choice = gr.Radio(["original", "anomaly_map", "heat_map", "pred_mask", "segmentations"], label="Choose the output")
121
 
122
+ gr.Markdown("## 4. Drop the image in the input image box and run the inference")
123
  with gr.Row():
124
  with gr.Column():
125
+ image = gr.Image(type="numpy", label= "Input image")
 
126
 
127
  with gr.Column():
128
  output_img = gr.outputs.Image(type="numpy", label="Anomalib Output")
129
 
130
+ compile_inference_btn = gr.Button("Compile Model + Run Inference")
131
 
132
  with gr.Row():
133
  # Create your output components
 
135
  output_confidence = gr.Textbox(label="Confidence [%]")
136
  output_time = gr.Textbox(label="Inference Time [ms]")
137
 
138
+ gr.Markdown("Changing your choice of category or device will recompile the model.")
139
+
140
+ gr.Markdown("## OR use our image examples for a quick start")
141
  gr.Examples(
142
  examples=example_list,
143
  inputs=[image, output_choice, category_choice, device_choice],
144
  outputs=[output_img, output_time, output_confidence],
145
+ fn=OV_compile_run_model)
146
+
147
+ compile_inference_btn.click(OV_compile_run_model, inputs=[category_choice, device_choice, image, output_choice],
148
+ outputs=[output_img, output_time, output_confidence])
 
149
 
150
  demo.launch(enable_queue=True)