File size: 2,821 Bytes
88d91f4
383512a
059d8f0
a1f3b5b
3850b6d
383512a
 
88d91f4
 
 
e653f9c
b774671
 
383512a
fb67b80
f8e1881
 
88d91f4
e9f37ce
383512a
88d91f4
383512a
f8e1881
 
 
383512a
88d91f4
 
f6931eb
1347af3
 
88d91f4
f6931eb
88d91f4
 
f6931eb
88d91f4
f6931eb
88d91f4
 
 
0496749
3850b6d
 
 
 
 
 
 
 
 
 
 
65e3d4b
3850b6d
 
059d8f0
6b1339b
3850b6d
 
1c34187
 
 
 
 
 
681afd2
3850b6d
383512a
 
f6931eb
383512a
f6931eb
 
383512a
f6931eb
 
383512a
58a3f61
 
f6931eb
 
 
 
 
 
 
 
f6889a3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import os
import json
import requests

import datetime
import gradio as gr
import pandas as pd
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
from huggingface_hub.repocard import metadata_load
from apscheduler.schedulers.background import BackgroundScheduler

from tqdm.contrib.concurrent import thread_map

from utils import *

DATASET_REPO_URL = "https://huggingface.co/datasets/pkalkman/drlc-leaderboard-data"
DATASET_REPO_ID = "pkalkman/drlc-leaderboard-data"
HF_TOKEN = os.environ.get("HF_TOKEN")

block = gr.Blocks()
api = HfApi(token=HF_TOKEN)

# Read the environments from the JSON file
with open('envs.json', 'r') as f:
    rl_envs = json.load(f)


def download_leaderboard_dataset():
    # Download the dataset from the Hugging Face Hub
    path = snapshot_download(repo_id=DATASET_REPO_ID, repo_type="dataset")
    return path


def get_data(rl_env, path) -> pd.DataFrame:
    """
    Get data from rl_env CSV file and return as DataFrame
    """
    csv_path = os.path.join(path, rl_env + ".csv")
    data = pd.read_csv(csv_path)
    return data


def get_last_refresh_time(path) -> str:
    """
    Get the latest modification time of any CSV file in the dataset path
    """
    # Get list of all CSV files in the dataset path
    csv_files = [os.path.join(path, f) for f in os.listdir(path) if f.endswith('.csv')]
    
    # Get the latest modification time
    latest_time = max([os.path.getmtime(f) for f in csv_files])
    
    # Convert to human-readable format
    return datetime.datetime.fromtimestamp(latest_time).strftime('%Y-%m-%d %H:%M:%S')


with block:
    path_ = download_leaderboard_dataset()
    # Get the last refresh time
    last_refresh_time = get_last_refresh_time(path_)

    gr.Markdown(f"""
    # πŸ† Deep Reinforcement Learning Course Leaderboard πŸ† 
    
    Presenting the latest leaderboard from the Hugging Face Deep RL Course - refresh ({last_refresh_time}).
    """)

    
    for i in range(0, len(rl_envs)):
        rl_env = rl_envs[i]
        with gr.TabItem(rl_env["rl_env_beautiful"]):
            with gr.Row():
                markdown = f"""
                    # {rl_env['rl_env_beautiful']}
                    
                    ### Leaderboard for {rl_env['rl_env_beautiful']}
                    """
                gr.Markdown(markdown)

            with gr.Row():
                # Display the data for this RL environment
                data = get_data(rl_env["rl_env"], path_)
                gr.Dataframe(
                    value=data,
                    headers=["Ranking πŸ†", "User πŸ€—", "Model id πŸ€–", "Results", "Mean Reward", "Std Reward"],
                    datatype=["number", "markdown", "markdown", "number", "number", "number"],
                    row_count=(100, 'fixed')
                )

block.launch()