Spaces:
Runtime error
Runtime error
File size: 2,821 Bytes
88d91f4 383512a 059d8f0 a1f3b5b 3850b6d 383512a 88d91f4 e653f9c b774671 383512a fb67b80 f8e1881 88d91f4 e9f37ce 383512a 88d91f4 383512a f8e1881 383512a 88d91f4 f6931eb 1347af3 88d91f4 f6931eb 88d91f4 f6931eb 88d91f4 f6931eb 88d91f4 0496749 3850b6d 65e3d4b 3850b6d 059d8f0 6b1339b 3850b6d 1c34187 681afd2 3850b6d 383512a f6931eb 383512a f6931eb 383512a f6931eb 383512a 58a3f61 f6931eb f6889a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
import os
import json
import requests
import datetime
import gradio as gr
import pandas as pd
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
from huggingface_hub.repocard import metadata_load
from apscheduler.schedulers.background import BackgroundScheduler
from tqdm.contrib.concurrent import thread_map
from utils import *
DATASET_REPO_URL = "https://huggingface.co/datasets/pkalkman/drlc-leaderboard-data"
DATASET_REPO_ID = "pkalkman/drlc-leaderboard-data"
HF_TOKEN = os.environ.get("HF_TOKEN")
block = gr.Blocks()
api = HfApi(token=HF_TOKEN)
# Read the environments from the JSON file
with open('envs.json', 'r') as f:
rl_envs = json.load(f)
def download_leaderboard_dataset():
# Download the dataset from the Hugging Face Hub
path = snapshot_download(repo_id=DATASET_REPO_ID, repo_type="dataset")
return path
def get_data(rl_env, path) -> pd.DataFrame:
"""
Get data from rl_env CSV file and return as DataFrame
"""
csv_path = os.path.join(path, rl_env + ".csv")
data = pd.read_csv(csv_path)
return data
def get_last_refresh_time(path) -> str:
"""
Get the latest modification time of any CSV file in the dataset path
"""
# Get list of all CSV files in the dataset path
csv_files = [os.path.join(path, f) for f in os.listdir(path) if f.endswith('.csv')]
# Get the latest modification time
latest_time = max([os.path.getmtime(f) for f in csv_files])
# Convert to human-readable format
return datetime.datetime.fromtimestamp(latest_time).strftime('%Y-%m-%d %H:%M:%S')
with block:
path_ = download_leaderboard_dataset()
# Get the last refresh time
last_refresh_time = get_last_refresh_time(path_)
gr.Markdown(f"""
# π Deep Reinforcement Learning Course Leaderboard π
Presenting the latest leaderboard from the Hugging Face Deep RL Course - refresh ({last_refresh_time}).
""")
for i in range(0, len(rl_envs)):
rl_env = rl_envs[i]
with gr.TabItem(rl_env["rl_env_beautiful"]):
with gr.Row():
markdown = f"""
# {rl_env['rl_env_beautiful']}
### Leaderboard for {rl_env['rl_env_beautiful']}
"""
gr.Markdown(markdown)
with gr.Row():
# Display the data for this RL environment
data = get_data(rl_env["rl_env"], path_)
gr.Dataframe(
value=data,
headers=["Ranking π", "User π€", "Model id π€", "Results", "Mean Reward", "Std Reward"],
datatype=["number", "markdown", "markdown", "number", "number", "number"],
row_count=(100, 'fixed')
)
block.launch() |