pkalkman's picture
read the last_update file with the date and time the update process was last run
e63522b
raw
history blame
3.04 kB
import os
import json
import datetime
import gradio as gr
import pandas as pd
from huggingface_hub import HfApi, snapshot_download
from utils import make_clickable_model
from utils import make_clickable_user
DATASET_REPO_URL = "https://huggingface.co/datasets/pkalkman/drlc-leaderboard-data"
DATASET_REPO_ID = "pkalkman/drlc-leaderboard-data"
HF_TOKEN = os.environ.get("HF_TOKEN")
block = gr.Blocks()
api = HfApi(token=HF_TOKEN)
# Read the environments from the JSON file
with open('envs.json', 'r') as f:
rl_envs = json.load(f)
def download_leaderboard_dataset():
# Download the dataset from the Hugging Face Hub
path = snapshot_download(repo_id=DATASET_REPO_ID, repo_type="dataset")
return path
def get_data(rl_env, path) -> pd.DataFrame:
"""
Get data from rl_env CSV file, format model and user as clickable links, and return as DataFrame
"""
csv_path = os.path.join(path, rl_env + ".csv")
data = pd.read_csv(csv_path)
# Add clickable links for model and user
for index, row in data.iterrows():
data.at[index, "User"] = make_clickable_user(row["User"])
data.at[index, "Model"] = make_clickable_model(row["Model"])
return data
def get_last_refresh_time(path) -> str:
"""
Get the last update time from the last_update.txt file in the dataset path.
"""
# Path to the last_update.txt file
update_file_path = os.path.join(path, 'last_update.txt')
# Check if the file exists
if os.path.exists(update_file_path):
# Read the content of the file (the timestamp)
with open(update_file_path, 'r') as f:
last_refresh_time = f.read().strip()
return last_refresh_time
else:
# Fallback: If the file is missing, return a default message
return "Last update time not available"
with block:
path_ = download_leaderboard_dataset()
# Get the last refresh time
last_refresh_time = get_last_refresh_time(path_)
gr.Markdown(f"""
# πŸ† Deep Reinforcement Learning Course Leaderboard (Mirror)πŸ†
Presenting the latest leaderboard from the Hugging Face Deep RL Course - refresh ({last_refresh_time}).
""")
for i in range(0, len(rl_envs)):
rl_env = rl_envs[i]
with gr.TabItem(rl_env["rl_env_beautiful"]):
with gr.Row():
markdown = f"""
# {rl_env['rl_env_beautiful']}
### Leaderboard for {rl_env['rl_env_beautiful']}
"""
gr.Markdown(markdown)
with gr.Row():
# Display the data for this RL environment
data = get_data(rl_env["rl_env"], path_)
gr.Dataframe(
value=data,
headers=["Ranking πŸ†", "User πŸ€—", "Model id πŸ€–", "Results", "Mean Reward", "Std Reward"],
datatype=["number", "markdown", "markdown", "number", "number", "number"],
row_count=(100, 'fixed')
)
block.launch()