Spaces:
Build error
Build error
File size: 4,397 Bytes
7f0977b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
from typing import List, Union, cast, Tuple
from dataclasses import dataclass
from sklearn.model_selection import train_test_split
import pandas as pd
import streamlit as st
from src.features.util_build_features import (
Dataset,
SplitDataset,
undersample_training_data,
select_predictors,
import_data)
from src.visualization.metrics import (
streamlit_2columns_metrics_df_shape,
streamlit_2columns_metrics_series,
streamlit_2columns_metrics_pct_series,
streamlit_2columns_metrics_df,
streamlit_2columns_metrics_pct_df,
)
def initialise_data() -> Tuple[Dataset, SplitDataset]:
dataset = import_data()
st.write(
"Assuming data is already cleaned and relevant features (predictors) added."
)
with st.expander("Input Dataframe (X and y)"):
st.dataframe(dataset.df)
streamlit_2columns_metrics_df_shape(dataset.df)
selected_x_values = select_predictors(dataset)
with st.expander("Predictors Dataframe (X)"):
st.dataframe(selected_x_values)
streamlit_2columns_metrics_df_shape(selected_x_values)
st.header("Split Testing and Training Data")
test_size_slider_col, seed_col = st.columns(2)
with test_size_slider_col:
# Initialize test size
dataset.test_size = st.slider(
label="Test Size Percentage of Input Dataframe:",
min_value=0,
max_value=100,
value=dataset.test_size,
key="init_test_size",
format="%f%%",
)
with seed_col:
dataset.random_state = int(
st.number_input(label="Random State:", value=dataset.random_state)
)
split_dataset = dataset.train_test_split(selected_x_values)
true_status = split_dataset.y_test.to_frame().value_counts()
st.sidebar.metric(
label="Testing Data # of Actual Default (=1)",
value=true_status.get(1),
)
st.sidebar.metric(
label="Testing Data % of Actual Default",
value="{:.0%}".format(true_status.get(1) / true_status.sum()),
)
st.sidebar.metric(
label="Testing Data # of Actual Non-Default (=0)",
value=true_status.get(0),
)
st.sidebar.metric(
label="Testing Data % of Actual Non-Default",
value="{:.0%}".format(true_status.get(0) / true_status.sum()),
)
# Concat the testing sets
X_y_test = split_dataset.X_y_test
X_y_train = split_dataset.X_y_train
with st.expander("Testing Dataframe (X and y)"):
st.dataframe(X_y_test)
streamlit_2columns_metrics_df_shape(X_y_test)
streamlit_2columns_metrics_series(
"# Defaults(=1) (Testing Data)",
"# Non-Defaults(=0) (Testing Data)",
true_status,
)
streamlit_2columns_metrics_pct_series(
"% Defaults (Testing Data)",
"% Non-Defaults (Testing Data)",
true_status,
)
st.header("Training Data")
with st.expander("Training Dataframe (X and y)"):
st.dataframe(X_y_train)
streamlit_2columns_metrics_df_shape(X_y_train)
st.subheader("Class Count")
streamlit_2columns_metrics_df(
"# Defaults (Training Data Class Balance Check)",
"# Non-Defaults (Training Data Class Balance Check)",
split_dataset.y_train,
)
streamlit_2columns_metrics_pct_df(
"% Defaults (Training Data Class Balance Check)",
"% Non-Defaults (Training Data Class Balance Check)",
split_dataset.y_train,
)
balance_the_classes = st.radio(
label="Balance the Classes:", options=("Yes", "No")
)
if balance_the_classes == "Yes":
st.subheader("Balanced Classes (by Undersampling)")
(
split_dataset.X_train,
split_dataset.y_train,
_X_y_train,
class_balance_default,
) = undersample_training_data(X_y_train, "loan_status", split_dataset)
streamlit_2columns_metrics_series(
"# Defaults (Training Data with Class Balance)",
"# Non-Defaults (Training Data with Class Balance)",
class_balance_default,
)
streamlit_2columns_metrics_pct_series(
"% of Defaults (Training Data with Class Balance)",
"% of Non-Defaults (Training Data with Class Balance)",
class_balance_default,
)
return dataset, split_dataset
|