File size: 4,391 Bytes
7f0977b
 
 
 
 
 
 
 
7592386
7f0977b
 
 
 
 
 
7592386
7f0977b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from typing import List, Union, cast, Tuple
from dataclasses import dataclass
from sklearn.model_selection import train_test_split
import pandas as pd

import streamlit as st


from  features.util_build_features import (
    Dataset,
    SplitDataset,
    undersample_training_data,
    select_predictors,
    import_data)

from  visualization.metrics import (
    streamlit_2columns_metrics_df_shape,
    streamlit_2columns_metrics_series,
    streamlit_2columns_metrics_pct_series,
    streamlit_2columns_metrics_df,
    streamlit_2columns_metrics_pct_df,
)


def initialise_data() -> Tuple[Dataset, SplitDataset]:

    dataset = import_data()

    st.write(
        "Assuming data is already cleaned and relevant features (predictors) added."
    )

    with st.expander("Input Dataframe (X and y)"):
        st.dataframe(dataset.df)
        streamlit_2columns_metrics_df_shape(dataset.df)

    selected_x_values = select_predictors(dataset)

    with st.expander("Predictors Dataframe (X)"):
        st.dataframe(selected_x_values)
        streamlit_2columns_metrics_df_shape(selected_x_values)

    st.header("Split Testing and Training Data")

    test_size_slider_col, seed_col = st.columns(2)

    with test_size_slider_col:
        # Initialize test size
        dataset.test_size = st.slider(
            label="Test Size Percentage of Input Dataframe:",
            min_value=0,
            max_value=100,
            value=dataset.test_size,
            key="init_test_size",
            format="%f%%",
        )

    with seed_col:
        dataset.random_state = int(
            st.number_input(label="Random State:", value=dataset.random_state)
        )

    split_dataset = dataset.train_test_split(selected_x_values)

    true_status = split_dataset.y_test.to_frame().value_counts()

    st.sidebar.metric(
        label="Testing Data # of Actual Default (=1)",
        value=true_status.get(1),
    )

    st.sidebar.metric(
        label="Testing Data % of Actual Default",
        value="{:.0%}".format(true_status.get(1) / true_status.sum()),
    )

    st.sidebar.metric(
        label="Testing Data # of Actual Non-Default (=0)",
        value=true_status.get(0),
    )

    st.sidebar.metric(
        label="Testing Data % of Actual Non-Default",
        value="{:.0%}".format(true_status.get(0) / true_status.sum()),
    )

    # Concat the testing sets
    X_y_test = split_dataset.X_y_test
    X_y_train = split_dataset.X_y_train

    with st.expander("Testing Dataframe (X and y)"):
        st.dataframe(X_y_test)
        streamlit_2columns_metrics_df_shape(X_y_test)

    streamlit_2columns_metrics_series(
        "# Defaults(=1) (Testing Data)",
        "# Non-Defaults(=0) (Testing Data)",
        true_status,
    )

    streamlit_2columns_metrics_pct_series(
        "% Defaults (Testing Data)",
        "% Non-Defaults (Testing Data)",
        true_status,
    )

    st.header("Training Data")

    with st.expander("Training Dataframe (X and y)"):
        st.dataframe(X_y_train)
        streamlit_2columns_metrics_df_shape(X_y_train)

    st.subheader("Class Count")

    streamlit_2columns_metrics_df(
        "# Defaults (Training Data Class Balance Check)",
        "# Non-Defaults (Training Data Class Balance Check)",
        split_dataset.y_train,
    )

    streamlit_2columns_metrics_pct_df(
        "% Defaults (Training Data Class Balance Check)",
        "% Non-Defaults (Training Data Class Balance Check)",
        split_dataset.y_train,
    )

    balance_the_classes = st.radio(
        label="Balance the Classes:", options=("Yes", "No")
    )

    if balance_the_classes == "Yes":
        st.subheader("Balanced Classes (by Undersampling)")

        (
            split_dataset.X_train,
            split_dataset.y_train,
            _X_y_train,
            class_balance_default,
        ) = undersample_training_data(X_y_train, "loan_status", split_dataset)

        streamlit_2columns_metrics_series(
            "# Defaults (Training Data with Class Balance)",
            "# Non-Defaults (Training Data with Class Balance)",
            class_balance_default,
        )

        streamlit_2columns_metrics_pct_series(
            "% of Defaults (Training Data with Class Balance)",
            "% of Non-Defaults (Training Data with Class Balance)",
            class_balance_default,
        )

    return dataset, split_dataset