File size: 17,695 Bytes
7f0977b
 
 
 
 
 
 
 
 
 
 
 
7592386
 
7f0977b
 
 
 
7592386
7f0977b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cadafda
7f0977b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
from typing import Union
import pandas as pd
from sklearn.model_selection import StratifiedKFold, cross_val_score
import streamlit as st
import numpy as np
from sklearn.metrics import (
    classification_report,
    confusion_matrix,
)
from sklearn.linear_model import LogisticRegression
import xgboost as xgb
from xgboost.sklearn import XGBClassifier
from  features.util_build_features import SplitDataset
"""from  models.model_utils import (
    create_cross_validation_df,
    cross_validation_scores,
    get_df_trueStatus_probabilityDefault_threshStatus_loanAmount,
)"""
from  visualization.graphs_test import (
    cross_validation_graph,
)


def make_tests_view(
    model_name_short: str,
    model_name_generic: str,
):
    def view(
        clf_xgbt_model: Union[XGBClassifier, LogisticRegression],
        split_dataset: SplitDataset,
        currency: str,
        prob_thresh_selected,
        predicted_default_status,
    ):
        st.header(f"Model Evaluation - {model_name_generic}")

        st.subheader("Cross Validation")

        st.write("Shows how our model will perform as new loans come in.")
        st.write(
            "If evaluation metric for test and train set improve as models \
            train on each fold suggests performance will be stable."
        )

        st.write(f'{model_name_short} cross validation test:')

        stcol_seed, stcol_eval_metric = st.columns(2)

        with stcol_seed:
            cv_seed = int(
                st.number_input(
                    label="Random State Seed for Cross Validation:",
                    value=123235,
                    key=f"cv_seed_{model_name_short}",
                )
            )

        with stcol_eval_metric:
            eval_metric = st.selectbox(
                label="Select evaluation metric",
                options=[
                    "auc",
                    "aucpr",
                    "rmse",
                    "mae",
                    "logloss",
                    "error",
                    "merror",
                    "mlogloss",
                ],
                key=f"eval_metric_{model_name_short}",
            )

        stcol_trees, stcol_eval_nfold, stcol_earlystoppingrounds = st.columns(
            3
        )

        with stcol_trees:
            trees = int(
                st.number_input(
                    label="Number of trees",
                    value=5,
                    key=f"trees_{model_name_short}",
                )
            )

        with stcol_eval_nfold:
            nfolds = int(
                st.number_input(
                    label="Number of folds",
                    value=5,
                    key=f"nfolds_{model_name_short}",
                )
            )

        with stcol_earlystoppingrounds:
            early_stopping_rounds = int(
                st.number_input(
                    label="Early stopping rounds",
                    value=10,
                    key=f"early_stopping_rounds_{model_name_short}",
                )
            )

        DTrain, cv_df = create_cross_validation_df(
            split_dataset.X_test,
            split_dataset.y_test,
            eval_metric,
            cv_seed,
            trees,
            nfolds,
            early_stopping_rounds,
        )

        st.write(cv_df)

        scoring_options = [
            "roc_auc",
            "accuracy",
            "precision",
            "recall",
            "f1",
            "jaccard",
        ]

        overfit_test = st.radio(
            label="Overfit test:",
            options=("No", "Yes"),
            key=f"overfit_test_{model_name_short}",
        )

        if overfit_test == "Yes":
            st.write("Overfit test:")
            iterations = int(
                st.number_input(
                    label="Number of folds (iterations)",
                    value=500,
                    key=f"iterations_{model_name_short}",
                )
            )

            DTrain, cv_df_it = create_cross_validation_df(
                split_dataset.X_test,
                split_dataset.y_test,
                eval_metric,
                cv_seed,
                iterations,
                nfolds,
                iterations,
            )

            fig_it = cross_validation_graph(cv_df_it, eval_metric, iterations)
            st.pyplot(fig_it)

        st.write("Sklearn cross validation test:")
        stcol_scoringmetric, st_nfold = st.columns(2)

        with stcol_scoringmetric:
            score_metric = st.selectbox(
                label="Select score",
                options=scoring_options,
                key=f"stcol_scoringmetric_{model_name_short}",
            )

        with st_nfold:
            nfolds_score = int(
                st.number_input(
                    label="Number of folds",
                    value=5,
                    key=f"st_nfold_{model_name_short}",
                )
            )

        cv_scores = cross_validation_scores(
            clf_xgbt_model,
            split_dataset.X_test,
            split_dataset.y_test,
            nfolds_score,
            score_metric,
            cv_seed,
        )

        stcol_vals, stcol_mean, st_std = st.columns(3)

        with stcol_vals:
            st.markdown(f"{score_metric} scores:")
            st.write(
                pd.DataFrame(
                    cv_scores,
                    columns=[score_metric],
                )
            )

        with stcol_mean:
            st.metric(
                label=f"Average {score_metric} score ",
                value="{:.4f}".format(cv_scores.mean()),
                delta=None,
                delta_color="normal",
            )

        with st_std:
            st.metric(
                label=f"{score_metric} standard deviation (+/-)",
                value="{:.4f}".format(cv_scores.std()),
                delta=None,
                delta_color="normal",
            )

        st.subheader("Classification Report")

        target_names = ["Non-Default", "Default"]

        classification_report_dict = classification_report(
            split_dataset.y_test,
            predicted_default_status,
            target_names=target_names,
            output_dict=True,
        )

        (
            stcol_defaultpres,
            stcol_defaultrecall,
            stcol_defaultf1score,
            stcol_f1score,
        ) = st.columns(4)
        with stcol_defaultpres:
            st.metric(
                label="Default Precision",
                value="{:.0%}".format(
                    classification_report_dict["Default"]["precision"]
                ),
                delta=None,
                delta_color="normal",
            )

        with stcol_defaultrecall:
            st.metric(
                label="Default Recall",
                value="{:.0%}".format(
                    classification_report_dict["Default"]["recall"]
                ),
                delta=None,
                delta_color="normal",
            )

        with stcol_defaultf1score:
            st.metric(
                label="Default F1 Score",
                value="{:.2f}".format(
                    classification_report_dict["Default"]["f1-score"]
                ),
                delta=None,
                delta_color="normal",
            )

        with stcol_f1score:
            st.metric(
                label="Macro avg F1 Score (Model F1 Score):",
                value="{:.2f}".format(
                    classification_report_dict["macro avg"]["f1-score"]
                ),
                delta=None,
                delta_color="normal",
            )

        with st.expander("Classification Report Dictionary:"):
            st.write(classification_report_dict)

        st.markdown(
            f'Default precision: {"{:.0%}".format(classification_report_dict["Default"]["precision"])} of loans predicted as default were actually default.'
        )

        st.markdown(
            f'Default recall: {"{:.0%}".format(classification_report_dict["Default"]["recall"])} of true defaults predicted correctly.'
        )

        f1_gap = 1 - classification_report_dict["Default"]["f1-score"]
        st.markdown(
            f'Default F1 score: {"{:.2f}".format(classification_report_dict["Default"]["f1-score"])}\
                is {"{:.2f}".format(f1_gap)} away from perfect precision and recall (no false positive rate).'
        )

        st.markdown(
            f'macro avg F1 score: {"{:.2f}".format(classification_report_dict["macro avg"]["f1-score"])} is the models F1 score.'
        )

        st.subheader("Confusion Matrix")
        confuctiomatrix_dict = confusion_matrix(
            split_dataset.y_test, predicted_default_status
        )

        tn, fp, fn, tp = confusion_matrix(
            split_dataset.y_test, predicted_default_status
        ).ravel()

        with st.expander(
            "Confusion matrix (column name = classification model prediction, row name = true status, values = number of loans"
        ):
            st.write(confuctiomatrix_dict)

        st.markdown(
            f'{tp} ,\
            {"{:.0%}".format(tp / len(predicted_default_status))} \
                true positives (defaults correctly predicted as defaults).'
        )

        st.markdown(
            f'{fp} ,\
            {"{:.0%}".format(fp / len(predicted_default_status))} \
                false positives (non-defaults incorrectly predicted as defaults).'
        )

        st.markdown(
            f'{fn} ,\
            {"{:.0%}".format(fn / len(predicted_default_status))} \
                false negatives (defaults incorrectly predicted as non-defaults).'
        )

        st.markdown(
            f'{tn} ,\
            {"{:.0%}".format(tn / len(predicted_default_status))} \
                true negatives (non-defaults correctly predicted as non-defaults).'
        )

        st.subheader("Bad Rate")

        df_trueStatus_probabilityDefault_threshStatus_loanAmount = (
            get_df_trueStatus_probabilityDefault_threshStatus_loanAmount(
                clf_xgbt_model,
                split_dataset.X_test,
                split_dataset.y_test,
                prob_thresh_selected,
                "loan_amnt",
            )
        )

        with st.expander(
            "Loan Status, Probability of Default, & Loan Amount DataFrame"
        ):
            st.write(df_trueStatus_probabilityDefault_threshStatus_loanAmount)

        accepted_loans = (
            df_trueStatus_probabilityDefault_threshStatus_loanAmount[
                df_trueStatus_probabilityDefault_threshStatus_loanAmount[
                    "PREDICT_DEFAULT_STATUS"
                ]
                == 0
            ]
        )

        bad_rate = (
            np.sum(accepted_loans["loan_status"])
            / accepted_loans["loan_status"].count()
        )

        with st.expander("Loan Amount Summary Statistics"):
            st.write(
                df_trueStatus_probabilityDefault_threshStatus_loanAmount[
                    "loan_amnt"
                ].describe()
            )

        avg_loan = np.mean(
            df_trueStatus_probabilityDefault_threshStatus_loanAmount[
                "loan_amnt"
            ]
        )

        crosstab_df = pd.crosstab(
            df_trueStatus_probabilityDefault_threshStatus_loanAmount[
                "loan_status"
            ],  # row label
            df_trueStatus_probabilityDefault_threshStatus_loanAmount[
                "PREDICT_DEFAULT_STATUS"
            ],
        ).apply(
            lambda x: x * avg_loan, axis=0
        )  # column label

        with st.expander(
            "Cross tabulation (column name = classification model prediction, row name = true status, values = number of loans * average loan value"
        ):
            st.write(crosstab_df)

        st.write(
            f'Bad rate: {"{:.2%}".format(bad_rate)} of all the loans the model accepted (classified as non-default) from the test set were actually defaults.'
        )

        st.write(
            f'Estimated value of the bad rate is {currency} {"{:,.2f}".format(crosstab_df[0][1])}.'
        )

        st.write(
            f'Total estimated value of actual non-default loans is {currency} {"{:,.2f}".format(crosstab_df[0][0]+crosstab_df[0][1])}'
        )

        st.write(
            f'Estimated value of loans incorrectly predicted as default is {currency} {"{:,.2f}".format(crosstab_df[1][0])}'
        )

        st.write(
            f'Estimated value of loans correctly predicted as defaults is {currency} {"{:,.2f}".format(crosstab_df[1][1])}'
        )

        return df_trueStatus_probabilityDefault_threshStatus_loanAmount

    return view


def cross_validation_scores(model, X, y, nfold, score, seed):
    # return cv scores of metric
    return cross_val_score(
        model,
        np.ascontiguousarray(X),
        np.ravel(np.ascontiguousarray(y)),
        cv=StratifiedKFold(n_splits=nfold, shuffle=True, random_state=seed),
        scoring=score,
    )


def create_cross_validation_df(
    X, y, eval_metric, seed, trees, n_folds, early_stopping_rounds
):
    # Test data x and y
    DTrain = xgb.DMatrix(X, label=y)

    # auc or logloss
    params = {
        "eval_metric": eval_metric,
        "objective": "binary:logistic",  # logistic say 0 or 1 for loan status
        "seed": seed,
    }

    # Create the data frame of cross validations
    cv_df = xgb.cv(
        params,
        DTrain,
        num_boost_round=trees,
        nfold=n_folds,
        early_stopping_rounds=early_stopping_rounds,
        shuffle=True,
    )

    return [DTrain, cv_df]


def create_accept_rate_list(start, end, samples):
    return np.linspace(start, end, samples, endpoint=True)


def create_strategyTable_df(
    start, end, samples, actual_probability_predicted_acc_rate, true, currency
):
    accept_rates = create_accept_rate_list(start, end, samples)
    thresholds_strat = []
    bad_rates_start = []
    Avg_Loan_Amnt = actual_probability_predicted_acc_rate[true].mean()
    num_accepted_loans_start = []

    for rate in accept_rates:
        # Calculate the threshold for the acceptance rate
        thresh = np.quantile(
            actual_probability_predicted_acc_rate["PROB_DEFAULT"], rate
        ).round(3)
        # Add the threshold value to the list of thresholds
        thresholds_strat.append(
            np.quantile(
                actual_probability_predicted_acc_rate["PROB_DEFAULT"], rate
            ).round(3)
        )

        # Reassign the loan_status value using the threshold
        actual_probability_predicted_acc_rate[
            "PREDICT_DEFAULT_STATUS"
        ] = actual_probability_predicted_acc_rate["PROB_DEFAULT"].apply(
            lambda x: 1 if x > thresh else 0
        )

        # Create a set of accepted loans using this acceptance rate
        accepted_loans = actual_probability_predicted_acc_rate[
            actual_probability_predicted_acc_rate["PREDICT_DEFAULT_STATUS"]
            == 0
        ]
        # Calculate and append the bad rate using the acceptance rate
        bad_rates_start.append(
            np.sum((accepted_loans[true]) / len(accepted_loans[true])).round(3)
        )
        # Accepted loans
        num_accepted_loans_start.append(len(accepted_loans))

    # Calculate estimated value
    money_accepted_loans = [
        accepted_loans * Avg_Loan_Amnt
        for accepted_loans in num_accepted_loans_start
    ]

    money_bad_accepted_loans = [
        2 * money_accepted_loan * bad_rate
        for money_accepted_loan, bad_rate in zip(
            money_accepted_loans, bad_rates_start
        )
    ]

    zip_object = zip(money_accepted_loans, money_bad_accepted_loans)
    estimated_value = [
        money_accepted_loan - money_bad_accepted_loan
        for money_accepted_loan, money_bad_accepted_loan in zip_object
    ]

    accept_rates = ["{:.2f}".format(elem) for elem in accept_rates]

    thresholds_strat = ["{:.2f}".format(elem) for elem in thresholds_strat]

    bad_rates_start = ["{:.2f}".format(elem) for elem in bad_rates_start]

    estimated_value = ["{:.2f}".format(elem) for elem in estimated_value]

    return (
        pd.DataFrame(
            zip(
                accept_rates,
                thresholds_strat,
                bad_rates_start,
                num_accepted_loans_start,
                estimated_value,
            ),
            columns=[
                "Acceptance Rate",
                "Threshold",
                "Bad Rate",
                "Num Accepted Loans",
                f"Estimated Value ({currency})",
            ],
        )
        .sort_values(by="Acceptance Rate", axis=0, ascending=False)
        .reset_index(drop=True)
    )


def get_df_trueStatus_probabilityDefault_threshStatus_loanAmount(
    model, X, y, threshold, loan_amount_col_name
):
    true_status = y.to_frame()

    loan_amount = X[loan_amount_col_name]

    clf_prediction_prob = model.predict_proba(np.ascontiguousarray(X))

    clf_prediction_prob_df = pd.DataFrame(
        clf_prediction_prob[:, 1], columns=["PROB_DEFAULT"]
    )

    clf_thresh_predicted_default_status = (
        clf_prediction_prob_df["PROB_DEFAULT"]
        .apply(lambda x: 1 if x > threshold else 0)
        .rename("PREDICT_DEFAULT_STATUS")
    )

    return pd.concat(
        [
            true_status.reset_index(drop=True),
            clf_prediction_prob_df.reset_index(drop=True),
            clf_thresh_predicted_default_status.reset_index(drop=True),
            loan_amount.reset_index(drop=True),
        ],
        axis=1,
    )