File size: 9,930 Bytes
7d861ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
from typing import OrderedDict
import streamlit as st  # works on command prompt
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import xgboost as xgb
from sklearn.metrics import (
    roc_curve,
)
from sklearn.calibration import calibration_curve
from xgboost import plot_tree
from views.typing import ModelView


def plot_logistic_coeff_barh(coef_dict, x, y):
    fig = plt.figure(figsize=(x, y))
    coef_dict_sorted = dict(
        sorted(coef_dict.items(), key=lambda item: item[1], reverse=False)
    )
    plt.barh(*zip(*coef_dict_sorted.items()))
    return fig


def print_negative_coefficients_logistic_model(coef_dict):
    # Equal to or less than 0
    NegativeCoefficients = dict(
        filter(lambda x: x[1] <= 0.0, coef_dict.items())
    )

    NegativeCoefficientsSorted = sorted(
        NegativeCoefficients.items(), key=lambda x: x[1], reverse=False
    )
    text = (
        "\n\nFeatures the model found to be negatively correlated with probability of default are:"
        "\n{negative_features}:"
    )
    st.markdown(text.format(negative_features=NegativeCoefficientsSorted))
    st.markdown(type(NegativeCoefficientsSorted))
    st.markdown(NegativeCoefficients.items())


def print_positive_coefficients_logistic_model(coef_dict):
    # Equal to or greater than 0
    PositiveCoefficients = dict(
        filter(lambda x: x[1] >= 0.0, coef_dict.items())
    )

    PositiveCoefficientsSorted = sorted(
        PositiveCoefficients.items(), key=lambda x: x[1], reverse=True
    )
    text = (
        "\n\nFeatures the model found to be positively correlated with probability of default are:"
        "\n{positive_features}:"
    )
    st.markdown(text.format(positive_features=PositiveCoefficientsSorted))


def plot_importance_gbt(clf_gbt_model, barxsize, barysize):
    axobject1 = xgb.plot_importance(clf_gbt_model, importance_type="weight")
    fig1 = axobject1.figure
    st.write("Feature Importance Plot (Gradient Boosted Tree)")
    fig1.set_size_inches(barxsize, barysize)
    return fig1


def download_importance_gbt(fig1, barxsize, barysize):
    if st.button(
        "Download Feature Importance Plot as png (Gradient Boosted Tree)"
    ):
        dpisize = max(barxsize, barysize)
        plt.savefig("bar.png", dpi=dpisize * 96, bbox_inches="tight")
        fig1.set_size_inches(barxsize, barysize)


def plot_tree_gbt(treexsize, treeysize, clf_gbt_model):
    plot_tree(clf_gbt_model)
    fig2 = plt.gcf()
    fig2.set_size_inches(treexsize, treeysize)
    return fig2


def download_tree_gbt(treexsize, treeysize):
    if st.button("Download Decision Tree Plot as png (Gradient Boosted Tree)"):
        dpisize = max(treexsize, treeysize)
        plt.savefig("tree.png", dpi=dpisize * 96, bbox_inches="tight")


def cross_validation_graph(cv, eval_metric, trees):

    # Plot the test AUC scores for each iteration
    fig = plt.figure()
    plt.plot(cv[cv.columns[2]])
    plt.title(
        "Test {eval_metric} Score Over {it_numbr} Iterations".format(
            eval_metric=eval_metric, it_numbr=trees
        )
    )
    plt.xlabel("Iteration Number")
    plt.ylabel("Test {eval_metric} Score".format(eval_metric=eval_metric))
    return fig


def recall_accuracy_threshold_tradeoff_fig(
    widthsize,
    heightsize,
    threshold_list,
    thresh_def_recalls_list,
    thresh_nondef_recalls_list,
    thresh_accs_list,
):
    fig = plt.figure(figsize=(widthsize, heightsize))
    plt.plot(threshold_list, thresh_def_recalls_list, label="Default Recall")
    plt.plot(
        threshold_list, thresh_nondef_recalls_list, label="Non-Default Recall"
    )
    plt.plot(threshold_list, thresh_accs_list, label="Model Accuracy")
    plt.xlabel("Probability Threshold")
    plt.ylabel("Score")
    plt.xlim(0, 1)
    plt.ylim(0, 1)
    plt.legend()
    plt.title("Recall and Accuracy Score Tradeoff with Probability Threshold")
    plt.grid(False)
    return fig


def roc_auc_compare_n_models(y, model_views: OrderedDict[str, ModelView]):
    colors = ["blue", "green"]
    fig = plt.figure()
    for color_idx, (model_name, model_view) in enumerate(model_views.items()):
        fpr, tpr, _thresholds = roc_curve(
            y, model_view.prediction_probability_df
        )
        plt.plot(fpr, tpr, color=colors[color_idx], label=f"{model_name}")
    plt.plot([0, 1], [0, 1], linestyle="--", label="Random Prediction")
    model_names = list(model_views.keys())
    if not model_names:
        model_name_str = "None"
    elif len(model_names) == 1:
        model_name_str = model_names[0]
    else:
        model_name_str = " and ".join(
            [", ".join(model_names[:-1]), model_names[-1]]
        )
    plt.title(f"ROC Chart for {model_name_str} on the Probability of Default")
    plt.xlabel("False Positive Rate (FP Rate)")
    plt.ylabel("True Positive Rate (TP Rate)")
    plt.legend()
    plt.grid(False)
    plt.xlim(0, 1)
    plt.ylim(0, 1)
    return fig


def calibration_curve_report_commented_n(
    y, model_views: OrderedDict[str, ModelView], bins: int
):
    fig = plt.figure()
    for model_name, model_view in model_views.items():
        frac_of_pos, mean_pred_val = calibration_curve(
            y,
            model_view.prediction_probability_df,
            n_bins=bins,
            normalize=True,
        )
        plt.plot(mean_pred_val, frac_of_pos, "s-", label=f"{model_name}")

    # Create the calibration curve plot with the guideline
    plt.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated")

    plt.ylabel("Fraction of positives")
    plt.xlabel("Average Predicted Probability")
    plt.title("Calibration Curve")
    plt.legend()
    plt.grid(False)
    plt.xlim(0, 1)
    plt.ylim(0, 1)
    return fig


def acceptance_rate_threshold_fig(probability_default, acceptancerate, bins):
    # Probability distribution
    probability_stat_distribution = probability_default.describe()

    # Acceptance rate threshold
    acc_rate_thresh = np.quantile(probability_default, acceptancerate)
    fig = plt.figure()

    plt.hist(
        probability_default,
        color="blue",
        bins=bins,
        histtype="bar",
        ec="white",
    )

    # Add a reference line to the plot for the threshold
    plt.axvline(x=acc_rate_thresh, color="red")
    plt.title("Acceptance Rate Thershold")

    return (
        fig,
        probability_stat_distribution,
        acc_rate_thresh,
    )


def streamlit_2columns_metrics_pct_df(
    column1name_label: str,
    column2name_label: str,
    df: pd.DataFrame,
):
    (
        column1name,
        column2name,
    ) = st.columns(2)

    with column1name:
        st.metric(
            label=column1name_label,
            value="{:.0%}".format(df.value_counts().get(1) / df.shape[0]),
            delta=None,
            delta_color="normal",
        )

    with column2name:
        st.metric(
            label=column2name_label,
            value="{:.0%}".format(df.value_counts().get(0) / df.shape[0]),
            delta=None,
            delta_color="normal",
        )


def streamlit_2columns_metrics_df(
    column1name_label: str,
    column2name_label: str,
    df: pd.DataFrame,
):
    (
        column1name,
        column2name,
    ) = st.columns(2)

    with column1name:
        st.metric(
            label=column1name_label,
            value=df.value_counts().get(1),
            delta=None,
            delta_color="normal",
        )

    with column2name:
        st.metric(
            label=column2name_label,
            value=df.value_counts().get(0),
            delta=None,
            delta_color="normal",
        )


def streamlit_2columns_metrics_df_shape(df: pd.DataFrame):
    (
        column1name,
        column2name,
    ) = st.columns(2)

    with column1name:
        st.metric(
            label="Rows",
            value=df.shape[0],
            delta=None,
            delta_color="normal",
        )

    with column2name:
        st.metric(
            label="Columns",
            value=df.shape[1],
            delta=None,
            delta_color="normal",
        )


def streamlit_2columns_metrics_pct_series(
    column1name_label: str,
    column2name_label: str,
    series: pd.Series,
):
    (
        column1name,
        column2name,
    ) = st.columns(2)
    with column1name:
        st.metric(
            label=column1name_label,
            value="{:.0%}".format(series.get(1) / series.sum()),
            delta=None,
            delta_color="normal",
        )

    with column2name:
        st.metric(
            label=column2name_label,
            value="{:.0%}".format(series.get(0) / series.sum()),
            delta=None,
            delta_color="normal",
        )


def streamlit_2columns_metrics_series(
    column1name_label: str,
    column2name_label: str,
    series: pd.Series,
):
    (
        column1name,
        column2name,
    ) = st.columns(2)
    with column1name:
        st.metric(
            label=column1name_label,
            value=series.get(1),
            delta=None,
            delta_color="normal",
        )

    with column2name:
        st.metric(
            label=column2name_label,
            value=series.get(0),
            delta=None,
            delta_color="normal",
        )


def streamlit_chart_setting_height_width(
    title: str,
    default_widthvalue: int,
    default_heightvalue: int,
    widthkey: str,
    heightkey: str,
):
    with st.expander(title):

        lbarx_col, lbary_col = st.columns(2)

        with lbarx_col:
            width_size = st.number_input(
                label="Width in inches:",
                value=default_widthvalue,
                key=widthkey,
            )

        with lbary_col:
            height_size = st.number_input(
                label="Height in inches:",
                value=default_heightvalue,
                key=heightkey,
            )
    return width_size, height_size