Spaces:
Build error
Build error
File size: 8,644 Bytes
7d861ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
from dataclasses import dataclass
from typing import Union, cast
import numpy as np
import streamlit as st
import plotly.express as px
import pandas as pd
from xgboost.sklearn import XGBClassifier
from sklearn.linear_model import LogisticRegression
from common.data import SplitDataset
from common.util import (
model_probability_values_df,
apply_threshold_to_probability_values,
find_best_threshold_J_statistic,
default_status_per_threshold,
classification_report_per_threshold,
thresh_classification_report_recall_accuracy,
)
from common.views import (
streamlit_2columns_metrics_df,
streamlit_2columns_metrics_pct_df,
)
@dataclass(frozen=True)
class Threshold:
probability_threshold_selected: float
predicted_default_status: pd.Series
prediction_probability_df: pd.DataFrame
def make_threshold_view(
model_name_short: str,
model_name: str,
):
def view(
clf_gbt_model: Union[XGBClassifier, LogisticRegression],
split_dataset: SplitDataset,
) -> Threshold:
st.subheader("Classification Probability Threshold - User Defined")
st.write(
f"""
The {model_name} model (obtained using training data) is applied on testing data to predict the loans probabilities of defaulting.\n
Probabilities of defaulting of the loans are compared to a probability threshold.\n
A loan is predicted to default if its predicted probability of defaulting is greater than the probability threshold.
"""
)
threshold_gbt_default = st.slider(
label="Default Probability Threshold:",
min_value=0.0,
max_value=1.0,
value=0.8,
key=f"threshold_{model_name_short}_default",
)
clf_prediction_prob_df_gbt = model_probability_values_df(
clf_gbt_model,
split_dataset.X_test,
)
clf_thresh_predicted_default_status_user_gbt = (
apply_threshold_to_probability_values(
clf_prediction_prob_df_gbt,
threshold_gbt_default,
)
)
streamlit_2columns_metrics_df(
"# of Predicted Defaults",
"# of Predicted Non-Default",
clf_thresh_predicted_default_status_user_gbt,
)
streamlit_2columns_metrics_pct_df(
"% of Loans Predicted to Default",
"% of Loans Predicted not to Default",
clf_thresh_predicted_default_status_user_gbt,
)
st.subheader("J Statistic Driven Classification Probability Threshold")
J_statistic_best_threshold = find_best_threshold_J_statistic(
split_dataset.y_test, clf_prediction_prob_df_gbt
)
st.metric(
label="Youden's J statistic calculated best threshold",
value=J_statistic_best_threshold,
)
clf_thresh_predicted_default_status_Jstatistic_gbt = (
apply_threshold_to_probability_values(
clf_prediction_prob_df_gbt,
J_statistic_best_threshold,
)
)
streamlit_2columns_metrics_df(
"# of Predicted Defaults",
"# of Predicted Non-Default",
clf_thresh_predicted_default_status_Jstatistic_gbt,
)
streamlit_2columns_metrics_pct_df(
"% of Loans Predicted to Default",
"% of Loans Predicted not to Default",
clf_thresh_predicted_default_status_Jstatistic_gbt,
)
st.subheader(
"Recall and Accuracy Tradeoff with given Probability Threshold"
)
# Steps
# Get list of thresholds
# Get default status per threshold
# Get classification report per threshold
# Get recall, nondef recall, and accuracy per threshold
threshold_list = np.arange(0, 1, 0.025).round(decimals=3).tolist()
threshold_default_status_list = default_status_per_threshold(
threshold_list, clf_prediction_prob_df_gbt["PROB_DEFAULT"]
)
thresh_classification_report_dict = (
classification_report_per_threshold(
threshold_list,
threshold_default_status_list,
split_dataset.y_test,
)
)
(
thresh_def_recalls_list,
thresh_nondef_recalls_list,
thresh_accs_list,
) = thresh_classification_report_recall_accuracy(
thresh_classification_report_dict
)
namelist = [
"Default Recall",
"Non Default Recall",
"Accuracy",
"Threshold",
]
df = pd.DataFrame(
[
thresh_def_recalls_list,
thresh_nondef_recalls_list,
thresh_accs_list,
threshold_list,
],
index=namelist,
)
df = df.T
fig2 = px.line(
data_frame=df,
y=["Default Recall", "Non Default Recall", "Accuracy"],
x="Threshold",
)
fig2.update_layout(
title="Recall and Accuracy score Trade-off with Probability Threshold",
xaxis_title="Probability Threshold",
yaxis_title="Score",
)
fig2.update_yaxes(range=[0.0, 1.0])
st.plotly_chart(fig2)
st.subheader("Acceptance Rate Driven Probability Threshold")
# Steps
# Set acceptance rate
# Get default status per threshold
# Get classification report per threshold
# Get recall, nondef recall, and accuracy per threshold
acceptance_rate = (
st.slider(
label="% of loans accepted (acceptance rate):",
min_value=0,
max_value=100,
value=85,
key=f"acceptance_rate_{model_name_short}",
format="%f%%",
)
/ 100
)
acc_rate_thresh_gbt = np.quantile(
clf_prediction_prob_df_gbt["PROB_DEFAULT"], acceptance_rate
)
st.write(
f"An acceptance rate of {acceptance_rate} results in probability threshold of {acc_rate_thresh_gbt}"
)
figa = px.histogram(clf_prediction_prob_df_gbt["PROB_DEFAULT"])
figa.update_layout(
title="Acceptance Rate Threshold vs. Loans Accepted",
xaxis_title="Acceptance Rate Threshold",
yaxis_title="Loans Accepted",
)
figa.update_traces(marker_line_width=1, marker_line_color="white")
figa.add_vline(
x=acc_rate_thresh_gbt,
line_width=3,
line_dash="solid",
line_color="red",
)
st.plotly_chart(figa)
clf_thresh_predicted_default_status_acceptance_gbt = (
apply_threshold_to_probability_values(
clf_prediction_prob_df_gbt,
acc_rate_thresh_gbt,
)
)
st.write()
st.subheader("Selected Probability Threshold")
options = [
"User Defined",
"J Statistic Driven",
"Acceptance Rate Driven",
]
prob_thresh_option = st.radio(
label="Selected Probability Threshold",
options=options,
key=f"{model_name_short}_radio_thresh",
)
if prob_thresh_option == "User Defined":
prob_thresh_selected_gbt = threshold_gbt_default
predicted_default_status_gbt = (
clf_thresh_predicted_default_status_user_gbt
)
elif prob_thresh_option == "J Statistic Driven":
prob_thresh_selected_gbt = J_statistic_best_threshold
predicted_default_status_gbt = (
clf_thresh_predicted_default_status_Jstatistic_gbt
)
else:
prob_thresh_selected_gbt = acc_rate_thresh_gbt
predicted_default_status_gbt = (
clf_thresh_predicted_default_status_acceptance_gbt
)
st.write(
f"Selected probability threshold is {prob_thresh_selected_gbt}"
)
return Threshold(
probability_threshold_selected=cast(
float, prob_thresh_selected_gbt
),
predicted_default_status=predicted_default_status_gbt,
prediction_probability_df=clf_prediction_prob_df_gbt,
)
return view
decision_tree_threshold_view = make_threshold_view("gbt", "decision tree")
logistic_threshold_view = make_threshold_view("lg", "logistic")
|