File size: 9,062 Bytes
92adbc4
 
 
787c07d
2880f9e
bc30ef4
9b9d05d
945e8e0
66795e6
92adbc4
 
 
 
 
 
 
 
787c07d
 
 
 
 
 
 
 
 
 
 
602831a
7b506d9
8a7688c
 
 
7b506d9
 
 
602831a
059553c
f5ad50d
8bacbf3
 
 
85068b6
7b506d9
 
85068b6
 
51bfd94
 
059553c
787c07d
1c5cec1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e4b6bd
1c5cec1
 
 
 
 
 
6e4b6bd
 
1c5cec1
 
 
 
d8f8183
1c5cec1
6e4b6bd
 
1c5cec1
a5b117b
 
 
6e4b6bd
d8f8183
 
 
 
6e4b6bd
 
 
62df589
7b506d9
51bfd94
4c8469c
51bfd94
 
1c5cec1
6e4b6bd
 
 
 
787c07d
 
 
 
 
 
92adbc4
1423a16
 
 
 
 
 
 
 
 
 
799a461
1423a16
 
 
 
 
1ca5011
1423a16
50770f3
1423a16
94ae4bb
1423a16
 
 
 
 
 
 
 
 
12b39bb
 
 
 
 
 
 
 
 
 
 
 
 
799a461
 
12b39bb
 
 
 
1423a16
787c07d
 
 
92adbc4
 
 
787c07d
 
43fcb2c
787c07d
a5b117b
 
1ca5011
 
 
2880f9e
43fcb2c
 
 
 
 
 
 
787c07d
 
43fcb2c
92adbc4
a5b117b
787c07d
1423a16
94ae4bb
f71d1d8
787c07d
d8f8183
 
 
 
 
 
1423a16
12b39bb
 
 
5519b6d
 
 
5b20086
5519b6d
 
5b20086
 
5519b6d
12b39bb
 
 
 
 
1423a16
1ca5011
 
1423a16
43fcb2c
66795e6
43fcb2c
 
 
 
 
66795e6
43fcb2c
66795e6
 
 
43fcb2c
 
 
 
66795e6
12b39bb
92adbc4
787c07d
a5b117b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# -*- coding: utf-8 -*-
import streamlit as st
import os
import pandas as pd
import matplotlib.pyplot as plt
from resume_generation_gemini_pro import generate_gemini
from similarity_score_refined import similarity_main
from pdf2image import convert_from_path


# Helper function to save uploaded files temporarily and return their paths
def save_uploaded_file(uploaded_file):
    file_path = os.path.join("/tmp", uploaded_file.name)
    with open(file_path, "wb") as f:
        f.write(uploaded_file.getbuffer())
    return file_path

# Custom CSS for styling
st.markdown("""
    <style>
        .main {
            background-color: #f5f5f5;
            font-family: Arial, sans-serif;
        }
        h1, h2 {
            color: #4B7BE5;
            text-align: center;
        }
        .stContainer {
            # background-color: #000000;
            display: flex;
            justify-content: center;
            align-items: center;
            # max-width: 100%;
            height: 30%;
            width: 45%;
        }
        .logo-container {
            # background-color: black;
            display: flex;
            justify-content: center;
            align-items: center;
            padding: 10px;
            # max-width: 100%;
            
        }
        .logo-container img {
            max-width: 60%;
            height: 40%;
        }
        .stButton>button {
            # background-color: #4B7BE5;
            # color: white;
            # font-size: 18px;
            appearance: none;
            background-color: transparent;
            border: 0.125em solid #1A1A1A;
            border-radius: 0.9375em;
            box-sizing: border-box;
            color: #3B3B3B;
            cursor: pointer;
            display: inline-block;
            font-family: Roobert,-apple-system,BlinkMacSystemFont,"Segoe UI",Helvetica,Arial,sans-serif,"Apple Color Emoji","Segoe UI Emoji","Segoe UI Symbol";
            font-size: 16px;
            font-weight: 600;
            line-height: normal;
            margin: 0;
            min-height: 3.75em;
            min-width: 0;
            outline: none;
            padding: 1em 2.3em;
            text-align: center;
            text-decoration: none;
            transition: all 300ms cubic-bezier(.23, 1, 0.32, 1);
            user-select: none;
            -webkit-user-select: none;
            touch-action: manipulation;
            will-change: transform;
        }
        .stButton>button:hover {
            color: #fff;
            background-color: #1A1A1A;
            box-shadow: rgba(0, 0, 0, 0.25) 0 8px 15px;
            transform: translateY(-2px);
            border: none !important;            
            
        }
        /* From Uiverse.io by e-coders */ 
             
        # .stButton>btn:disabled {
        #  pointer-events: none;
        # }
        
        .stButton>:active {
         box-shadow: none;
         transform: translateY(0);
        }
    </style>
""", unsafe_allow_html=True)

# Add ResumeMagic Logo
# st.image("logo.jpeg", use_container_width=True)
st.markdown('<div class="logo-container"></div>', unsafe_allow_html=True)
st.image("logo.jpeg", width=80)
st.markdown('</div>', unsafe_allow_html=True)


# Title and Description
st.title("Resume Tailoring with Google Generative AI")
st.markdown("### Upload your resume and job description to check similarity and generate a tailored resume.")

# Two columns for file uploaders
col1, col2 = st.columns(2)
with col1:
    uploaded_resume = st.file_uploader("Upload Current Resume (.docx or .pdf)", type=["docx", "pdf"], key="resume")
with col2:
    uploaded_job_description = st.file_uploader("Upload Job Description (.docx or .pdf)", type=["docx", "pdf"], key="job_description")

def get_score(resume_path, job_description_path):
    similarity_score = similarity_main(resume_path, job_description_path)
    if isinstance(similarity_score, str) and '%' in similarity_score:
        similarity_score = float(similarity_score.replace('%', ''))
        
        # Display messages based on score range
        if similarity_score < 50:
            st.markdown('<p style="color: red; font-weight: bold;">Low chance, skills gap identified!</p>', unsafe_allow_html=True)
            pie_colors = ['#FF4B4B', '#E5E5E5']  
        elif 50 <= similarity_score < 70:
            st.markdown('<p style="color: red; font-weight: bold;">Good chance but you can improve further!</p>', unsafe_allow_html=True)
            pie_colors = ['#FFC107', '#E5E5E5']  
        else:
            st.markdown('<p style="color: green; font-weight: bold;">Excellent! You can submit your CV.</p>', unsafe_allow_html=True)
            pie_colors = ['#4CAF50', '#E5E5E5']  
    
    return similarity_score, pie_colors

def display_score(similarity, colors):
    # Display Score as a Pie Chart
    st.markdown(f"### Resume - Job Match: {int(similarity_score)}%")
    
    # Pie chart to show similarity
    fig, ax = plt.subplots()
    # ax.pie([similarity_score, 100 - similarity_score], labels=['Match', 'Difference'], autopct='%1.1f%%', startangle=140, colors=['#4B7BE5', '#E5E5E5'])
    ax.pie([similarity_score, 100 - similarity_score], labels=['Match', 'Difference'], autopct='%1.1f%%', startangle=140, colors=pie_colors)
        
    ax.axis('equal')  
    st.pyplot(fig)

def save_docx_as_pdf(doc_content, output_path='output.pdf'):
    # Save document content as a .docx file
    temp_doc_path = 'temp.docx'
    doc = Document()
    doc.add_paragraph(doc_content)
    doc.save(temp_doc_path)
    
    # Convert .docx to PDF
    from docx2pdf import convert
    convert(temp_doc_path, output_path)
    os.remove(temp_doc_path)
    
def display_doc_as_image(pdf_path):
    poppler_path = 'usr/bin'
    images = convert_from_path(pdf_path, poppler_path=poppler_path)
    for img in images:
        buf = BytesIO()
        img.save(buf, format="PNG")
        st.image(buf)

# Process if files are uploaded
if uploaded_resume and uploaded_job_description:
    # Save files
    resume_path = save_uploaded_file(uploaded_resume)
    job_description_path = save_uploaded_file(uploaded_job_description)

    # Similarity Score Section
    st.markdown("---")
    # st.subheader("Check Job Match")

    if st.button("Resume-JD Matching"):
        with st.spinner("Computing Match"):
            similarity_score, pie_colors = get_score(resume_path, job_description_path)
            display_score(similarity_score, pie_colors)

        
        #Autoscroll
        st.markdown("""
            <script>
                window.scrollTo(0, document.body.scrollHeight);
            </script>
        """, unsafe_allow_html=True)

    # Generate Tailored Resume Section
    st.markdown("---")
    # st.subheader("Tailor Resume")

    if st.button("Tailor Resume"):
        with st.spinner("Generating resume..."):
            generated_resume, new_resume_path = generate_gemini(resume_path, job_description_path)
            # st.markdown("Generated Tailored Resume:")
            # st.write(generated_resume)

            #Autoscroll
            st.markdown("""
                <script>
                    window.scrollTo(0, document.body.scrollHeight);
                </script>
            """, unsafe_allow_html=True)

            col1, col2 = st.columns(2)
            with col1: 
                st.markdown("### Uploaded Resume:")
                # if resume_path.endswith('.docx'):
                #     save_docx_as_pdf(uploaded_resume.getvalue().decode('utf-8'), 'uploaded_resume.pdf')
                if uploaded_resume.type == "application/pdf":
                    display_doc_as_image(resume_path)
                else:
                    save_docx_as_pdf(resume_path, 'uploaded_resume.pdf')
                    display_doc_as_image('uploaded_resume.pdf')
                
                
            with col2:
                st.markdown("### Tailored Resume:")
                save_docx_as_pdf(generated_resume, 'tailored_resume.pdf')
                display_doc_as_image('tailored_resume.pdf')
            
            with st.spinner("Computing Match"):
                similarity_score, pie_colors = get_score(resume_path, job_description_path)
                display_score(similarity_score, pie_colors)
                
            if generated_resume is not None:
                from io import BytesIO
                from docx import Document
                
                doc = Document()
                doc.add_paragraph(generated_resume)
                
                resume_bytes = BytesIO()
                doc.save(resume_bytes)
                resume_bytes.seek(0)
                
                st.download_button(
                    label="Download Resume",
                    data=resume_bytes,
                    file_name="tailored_resume.docx",
                    mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document"
                )
                
else:
    st.warning("Please upload both the resume and job description files.")