# -*- coding: utf-8 -*- import streamlit as st import os import pandas as pd import matplotlib.pyplot as plt from resume_generation_gemini_pro import Gemini_pro_main from similarity_score_refined import similarity_main from io import BytesIO # Helper function to save uploaded files temporarily and return their paths def save_uploaded_file(uploaded_file): file_path = os.path.join("/tmp", uploaded_file.name) with open(file_path, "wb") as f: f.write(uploaded_file.getbuffer()) return file_path # Custom CSS for styling st.markdown(""" """, unsafe_allow_html=True) # Title and Description st.title("Resume Tailoring with Google Generative AI") st.markdown("### Upload your resume and job description to check similarity and generate a tailored resume.") # Two columns for file uploaders col1, col2 = st.columns(2) with col1: uploaded_resume = st.file_uploader("Upload Current Resume (.docx or .pdf)", type=["docx", "pdf"], key="resume") with col2: uploaded_job_description = st.file_uploader("Upload Job Description (.docx or .pdf)", type=["docx", "pdf"], key="job_description") # Process if files are uploaded if uploaded_resume and uploaded_job_description: # Save files resume_path = save_uploaded_file(uploaded_resume) job_description_path = save_uploaded_file(uploaded_job_description) # Similarity Score Section st.markdown("---") st.subheader("Check Job Match") if st.button("Resume-JD Matching"): with st.spinner("Computing Match"): similarity_score = similarity_main(resume_path, job_description_path) if isinstance(similarity_score, str) and '%' in similarity_score: similarity_score = float(similarity_score.replace('%', '')) # Display messages based on score range if similarity_score < 50: st.markdown('
Low chance, need to modify your CV!
', unsafe_allow_html=True) pie_colors = ['#FF4B4B', '#E5E5E5'] elif 50 <= similarity_score < 70: st.markdown('Good chance but you can improve further!
') pie_colors = ['#FFC107', '#E5E5E5'] else: st.markdown('Excellent! You can submit your CV.
', unsafe_allow_html=True) pie_colors = ['#4CAF50', '#E5E5E5'] # Display Score as a Pie Chart st.markdown(f"### Similarity Score: {int(similarity_score)}%") # Pie chart to show similarity fig, ax = plt.subplots() # ax.pie([similarity_score, 100 - similarity_score], labels=['Match', 'Difference'], autopct='%1.1f%%', startangle=140, colors=['#4B7BE5', '#E5E5E5']) ax.pie([similarity_score, 100 - similarity_score], labels=['Match', 'Difference'], autopct='%1.1f%%', startangle=140, colors=pie_colors) ax.axis('equal') st.pyplot(fig) # Generate Tailored Resume Section st.markdown("---") st.subheader("Tailor Resume") if st.button("Tailor Resume"): with st.spinner("Generating resume..."): generated_resume = Gemini_pro_main(resume_path, job_description_path) st.subheader("Generated Tailored Resume:") st.write(generated_resume) resume_bytes = BytesIO() generated_resume.save(resume_bytes) resume_bytes.seek(0) st.download_button( label="Download Resume", data=resume_bytes, file_name="tailored_resume.docx", mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document" ) else: st.warning("Please upload both the resume and job description files.") #Autoscroll st.markdown(""" """, unsafe_allow_html=True)