|
import os |
|
import random |
|
import gradio as gr |
|
import torch |
|
import clip |
|
import numpy as np |
|
import pandas as pd |
|
|
|
|
|
|
|
device = "mps" if torch.backends.mps.is_available() else "cpu" |
|
model, preprocess = clip.load("ViT-B/32", device=device) |
|
print('Using ' + device) |
|
|
|
features_path = 'features/' |
|
|
|
|
|
|
|
photo_features = np.load(features_path + "features.npy") |
|
photo_ids = pd.read_csv(features_path+ "updated_file.csv") |
|
descriptions = list(photo_ids['description']) |
|
photo_filenames = list(photo_ids['photo_id']) |
|
|
|
|
|
|
|
def clip_search(search_string): |
|
|
|
with torch.no_grad(): |
|
|
|
text_encoded = model.encode_text(clip.tokenize(search_string).to(device)) |
|
text_encoded /= text_encoded.norm(dim=-1, keepdim=True) |
|
|
|
text_features = text_encoded.cpu().numpy() |
|
|
|
|
|
similarities = list((text_features @ photo_features.T).squeeze(0)) |
|
|
|
|
|
candidates = sorted(zip(similarities, range(photo_features.shape[0])), key=lambda x: x[0], reverse=True) |
|
|
|
images = [] |
|
for i in range(30): |
|
|
|
idx = candidates[i][1] |
|
photo_id = photo_filenames[idx] |
|
caption = descriptions[idx] |
|
|
|
images.append([('https://thegogglesdonothing.com/projects/clipsearch/StanfordVRC/images/' + str(photo_id)), caption]) |
|
return images |
|
|
|
css = "footer {display: none !important;} .gradio-container {min-height: 0px !important;}" |
|
with gr.Blocks(css = css) as demo: |
|
with gr.Column(variant="panel"): |
|
with gr.Row(variant="compact"): |
|
search_string = gr.Textbox( |
|
label="Evocative Search", |
|
show_label=True, |
|
max_lines=1, |
|
placeholder="Type something abstruse, or click a suggested search below.", |
|
) |
|
btn = gr.Button("Retrieve Images", variant="primary") |
|
with gr.Row(variant="compact"): |
|
suggest1 = gr.Button("rococo", variant="secondary") |
|
suggest2 = gr.Button("brutalism", variant="secondary") |
|
suggest3 = gr.Button("classical", variant="secondary") |
|
suggest4 = gr.Button("gothic", variant="secondary") |
|
suggest5 = gr.Button("foliate", variant="secondary") |
|
gallery = gr.Gallery( |
|
label=False, show_label=False, elem_id="gallery", columns=[6] |
|
) |
|
|
|
suggest1.click(clip_search, inputs=suggest1, outputs=gallery) |
|
suggest2.click(clip_search, inputs=suggest2, outputs=gallery) |
|
suggest3.click(clip_search, inputs=suggest3, outputs=gallery) |
|
suggest4.click(clip_search, inputs=suggest4, outputs=gallery) |
|
suggest5.click(clip_search, inputs=suggest5, outputs=gallery) |
|
btn.click(clip_search, inputs=search_string, outputs=gallery) |
|
search_string.submit(clip_search, search_string, gallery) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|