Spaces:
Runtime error
Runtime error
import gradio as gr | |
from deepface import DeepFace | |
import numpy as np | |
import PIL | |
from PIL import Image, ImageDraw, ImageFont | |
import time | |
dbackends = [ | |
'opencv', | |
'ssd', | |
'dlib', | |
'mtcnn', | |
'retinaface', | |
'mediapipe', | |
'yolov8', | |
'yunet', | |
'fastmtcnn', | |
] | |
annotated_image = gr.AnnotatedImage() | |
jsontext = gr.Text(label= "deepface extract_faces results",) | |
def findFaces(imgfile,dbackend): | |
start_time = time.time() | |
print(start_time) | |
face_objs = DeepFace.extract_faces(img_path = imgfile, enforce_detection = False, detector_backend = dbackend) | |
numberoffaces = len(face_objs) | |
jsontext = '' | |
faceannotations = [] | |
for face_obj in face_objs: | |
face_coordinates = (face_obj["facial_area"]["x"],face_obj["facial_area"]["y"], (face_obj["facial_area"]["x"] + face_obj["facial_area"]["w"]),(face_obj["facial_area"]["y"] + face_obj["facial_area"]["h"])) | |
face_confidence = "{:.0%}".format(face_obj["confidence"]) | |
face_result=[face_coordinates,face_confidence] | |
faceannotations.append(face_result) | |
jsontext=faceannotations | |
run_time = str(round((time.time() - start_time),2)) | |
results = gr.AnnotatedImage( | |
label= "Detected " + str(numberoffaces) + " faces via " + dbackend + ' in ' + run_time + ' seconds.', | |
value=(imgfile, faceannotations) | |
) | |
print(run_time) | |
return(results,jsontext,numberoffaces,run_time) | |
dbackendchoice = gr.Radio(choices=dbackends,label='Detector Backend:') | |
demo = gr.Interface( | |
allow_flagging = "never", | |
fn=findFaces, | |
inputs=[gr.Image(value="8428_26_SM.jpg"), dbackendchoice], | |
outputs=[annotated_image,jsontext], | |
) | |
demo.launch(show_error=True) | |