import gradio as gr from deepface import DeepFace import numpy as np import PIL from PIL import Image, ImageDraw, ImageFont import time dbackends = [ ['Haar Cascade (OpenCV)','opencv'], ['Single Shot MultiBox Detector (OpenCV)','ssd'], ['Histogram of Oriented Gradients (Dlib)','dlib'], ['RetinaFace','retinaface'], ['You Only Look Once v8','yolov8'], ['YuNet','yunet'], # ['Multi-task Cascade Convolutional Neural Network (TensorFlow) ','mtcnn'], ['Fast Multi-task Cascade Convolutional Neural Network (PyTorch)','fastmtcnn'] ] with gr.Blocks() as demo: annotated_image = gr.AnnotatedImage() #jsontext = gr.Text(label= "deepface extract_faces results") selected_face = gr.Textbox(label="Selected Face", value="Click on a face above") def findFaces(imgfile,dbackend): start_time = time.time() print(start_time) face_objs = DeepFace.extract_faces(img_path = imgfile, enforce_detection = False, detector_backend = dbackend) numberoffaces = len(face_objs) jsontext = '' global faceannotations faceannotations = [] for i, face_obj in enumerate(face_objs,1): face_coordinates = (face_obj["facial_area"]["x"],face_obj["facial_area"]["y"], (face_obj["facial_area"]["x"] + face_obj["facial_area"]["w"]),(face_obj["facial_area"]["y"] + face_obj["facial_area"]["h"])) face_confidence = "Face " + str(i) + ": "+ "{:.0%}".format(face_obj["confidence"]) face_result=[face_coordinates,face_confidence] faceannotations.append(face_result) #jsontext=faceannotations #jsontext=face_objs run_time = str(round((time.time() - start_time),2)) results = gr.AnnotatedImage( label= "Detected " + str(numberoffaces) + " faces via " + dbackend + ' in ' + run_time + ' seconds.', value=(imgfile, faceannotations) ) print(run_time) return(results,numberoffaces,run_time) dbackendchoice = gr.Radio(choices=dbackends,label='Detector Backend:',value='retinaface') gr.Interface( allow_flagging = "never", fn=findFaces, inputs=[gr.Image(value="8428_26_SM.jpg"), dbackendchoice], outputs=[annotated_image,selected_face], ) def select_section(evt: gr.SelectData): return faceannotations[evt.index] annotated_image.select(select_section, None, selected_face) demo.launch(show_error=True)